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1 Introduction

The UK Regenerative Medicine 
Platform (UKRMP) is a £42m national 
initiative that brought together leading 
researchers from across 17 different 
universities to address the key 
translational challenges in regenerative 
medicine. Established in 2013 by the 
UK Research and Innovation’s (UKRI) 
Biotechnology and Biological Sciences 
Research Council (BBSRC), Engineering 
and Physical Sciences Research 
Council (EPSRC) and Medical Research 
Council (MRC), the UKRMP completed 
its second and final phase of funding 
in 2024. Eleven years of continuous 
strategic investment focussed on 
building a truly interdisciplinary agenda 
has helped address critical roadblocks 
to progress and established the UK 
at the forefront of the international 
regenerative medicine landscape. 
This final report aims to celebrate the 
exciting outcomes of the initiative, 
focusing on its recent second phase 
which began in 2018.  

The overall mission of UKRMP was to overcome hurdles 
in bringing innovative regenerative medicine therapies to 
patients. Specifically, UKRMP had three aims: 

	■ To establish several interdisciplinary research hubs 
with the critical mass and expertise to address the key 
knowledge gaps in the translation of stem cell biology 
and regenerative medicine towards application; 

	■ To provide novel tools, platform technologies 
and engineering solutions needed for therapeutic 
development; and

	■ To create a world-leading and fully connected national 
programme to pull through excellent discovery science 
in support of the commercial development and clinical 
delivery of regenerative medicine products. 

UKRMP was delivered in two phases. The first tranche  
of funding (£25m) between 2013-2018 drew together the 
major players in UK regenerative medicine and supported 
five interdisciplinary and complementary research hubs, 
as well as five disease-focused projects.  
The five UKRMP1 hubs were: 

	■ Cell behaviour, differentiation and manufacturing Hub 
(Director: Peter Andrews, University of Sheffield) 

	■ Engineering and exploiting the stem cell niche Hub 
(Director: Stuart Forbes, University of Edinburgh) 

	■ Safety and efficacy, focussing on imaging technologies 
Hub (Director: Kevin Park, University of Liverpool) 

	■ Acellular approaches for therapeutic delivery Hub 
(Director: Kevin Shakesheff, University of Nottingham) 

	■ Immunomodulation Hub (Director: Fiona Watt, King’s 
College London) 
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Starting in 2018, the second phase (£17m) represented 
an evolved and consolidated structure of three 
interdisciplinary research hubs that captured and built on 
the strengths of the previous funding period. Each hub 
had its own broad but distinctive focus, supported by a 
dedicated research team and connections to commercial 
and clinical end-users. As such, every UKRMP2 hub 
provided a UK ‘centre of expertise’ for their specific 
thematic area: 

	■ The Pluripotent Stem Cells and Engineered Cells Hub 
(Director: Roger Barker, University of Cambridge) aimed 
to advance regenerative medicine by overcoming the 
key outstanding hurdles to translate human pluripotent 
stem cell based cellular therapies into standard clinical 
practice. 

	■ The Engineered Cell Environment Hub (Director: Stuart 
Forbes, University of Edinburgh) aimed to facilitate 
the regeneration and repair of damaged organs with 
a particular focus on the role of the stem cell graft 
environment or “niche” within the body. 

	■ The Smart Materials Hub (Director: Molly Stevens, 
Imperial College London) aimed to develop the next 
generation of bioactive scaffolds and biomatrices for 
clinical applications. 

Collectively, the UKRMP hubs have provided a central 
source of expertise and knowledge – generating new 
tools, protocols and resources that can be utilised by 
other research groups in both academia and industry. 
Chapter 3 provides a detailed list of resources made 
available to the community by UKRMP2 and we 
encourage researchers to take full advantage of these.  

A key element within UKRMP2 was the cluster of 
cross-cutting projects to help accelerate the research 
undertaken in each hub towards clinical application. 
In 2018, UKRMP provided £2.5m of funding for new 
projects that specifically focused on the immunological 
issues of regenerative medicine. Furthermore, four 
strategic research projects were supported in 2019, 
two co-funded with the Juvenile Diabetes Research 
Foundation (JDRF) and the Multiple Sclerosis (MS) 
Society. The establishment of new projects like these 
brought new researchers into the platform to add 
capability and further foster collaboration within 
UKRMP2, furthering the effort to address translational 
bottlenecks in regenerative medicine. 

The fascinating, leading-edge research and impactful 
outcomes of the UKRMP2 hubs and projects are 
summarised in this report. Several case studies highlight 
particularly exciting outcomes within each hub while 
comprehensive publication lists are provided in Annex 1.  

We hope this report will be valuable to the community in 
bringing fully into view the activities and outputs across 
the Platform over the past decade.  We also look forward 
to seeing the established collaborations continue to drive 
progress in the coming years, effectively bridging the 
gap between bench and the clinic to bring to fruition the 
much-anticipated transformative impact of regenerative 
medicine on human health. 

UKRMP Executive Group: 

Rob Buckle (UKRI MRC) 

Philippa Hemmings (UKRI EPSRC) 

Paul Moss (University of Birmingham) 

Sadhana Sharma (UKRI BBSRC)



2. UKRMP2 Hub End 
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2.1 Pluripotent Stem Cells and Engineered Cells (PSEC) Hub

Who are PSEC and what do we do: 
The PSEC executive management team consisted of its 
director Prof. Roger Barker (University of Cambridge) 
and its project manager Dr Zoe Hewitt (University of 
Sheffield) and included representatives from each of the 
partnering institutions, who also led the three research 
programme themes. Theme 1, the largest workstream, 
was led by Prof. Ivana Barbaric (University of Sheffield) 
with Prof Wolf Reik (Babraham Institute) initially acting 
as deputy before Dr Florian Merkle (University of 
Cambridge) took over, Theme 2 was led by Prof. Robert 
Thomas (Loughborough University) and Theme 3 by Prof 
Cedric Ghevaert (University of Cambridge), who was also 
the deputy PSEC director. 

The overarching aim of the hub was to facilitate and 
deliver a platform of technologies and expertise for 
translating any new human pluripotent stem cell (hPSC) 
based therapy to the clinic. 

To contextualise the research, PSEC used two principal 
clinical exemplars that sat at different stages along the 
therapeutic pipeline: hPSC-derived dopaminergic (DA) 
neurons that are being developed for transplantation into 
the brain of people with Parkinson’s to replace the cells 
they have lost to the disease process and hPSC-derived 
megakaryocytes (MK), which make a component of 
blood called platelets that are needed for normal clotting, 
which are being developed to treat some people with 
low platelet counts (thrombocytopenia). Over the course 
of the programme, these exemplars were expanded 
to include hPSC-derived cells of the immune system 
(Macrophages), nerve cells in the gut (Enteric Neurones) 
and heart muscle cells (Cardiomyocytes) through  
linked projects. 

The three themes of the research programme each had 
specific aims which also crosslinked to enhance the 
progress and impact for the field (Figure 1).  
These aims were: 

	■ To define and understand the biological significance 
of commonly acquired (epi)genetic changes in hPSCs 
which occurs over time as these cells are grown in 
the lab. This includes understanding what this means 
for cells that are then derived from these genetically 
different stem cells. 

	■ To develop predictive models for hPSC manufactured 
products so they can be made more efficiently but still 
at the level needed for clinical use. 

	■ To develop a translational pipeline from lab to clinic 
through which we can genetically engineer cells to 
make them perform better or to stop them being 
rejected once implanted into a patient, but without that 
genetic manipulation having consequences through 
effects on genes that were not suppose to have  
been edited! 

Over the course of the award, PSEC successfully 
leveraged over a million pounds of additional funding to 
support the delivery of these scientific aims, with their 
direct research outputs enabling further funding awards 
in excess of 3.5 million pounds. The hub produced 
more than 80 peer reviewed publications, influenced 
international guidelines on stem cell research and clinical 
application, provided high quality resources and tools 
for the community, positively influenced the regenerative 
medicine careers of over 40 staff, collaborated with 
at least 20 external partners (mostly from industry) 
and hosted or co-hosted 10 high quality partnership 
dissemination events with industry and key stakeholders 

including the Cell and Gene Therapy Catapult, The British 
Society for Gene and Cell Therapy, The Canadian Stem 
Cell Institute, The British Pharmacological Society and 
The Tissue Engineering and Regenerative Medicine 
International Society (TERMIS).

Figure 1: PSEC infographic depicting the internal
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Key Scientific Contributions 
Over the duration of the award, PSEC has been able  
to contribute significantly to the Regenerative Medicine 
field. Our key scientific contributions are highlighted,  
but not limited to: 

	■ Developing an understanding of which genetically 
variant cells posed a potential risk for cell therapy 
(i.e. identify which cells that have been grown in the 
lab for many years have changed their genetic make 
up such that they may not behave as expected when 
being developed as a clinical therapy). This work led by 
the Barbaric group, in partnership with WiCell (USA), 
first produced an updated catalogue of the recurrent 
genetic changes detected in long term cultures of 
many different types of human PSCs (Figure 2). This 
analysis revealed striking changes in the emergence 
of recurrent genetic variants over time, in part because 
of changes in standard lab practices on growing such 
cells. This work provided an insight into the most 
common genetic changes with growing hPSC in the 
lab and allowed us to focus our research on designing 
improved strategies for their reliable detection and for 
minimising their occurrence. 

	■ Identifying strategies for minimising the occurrence of 
these common, possibly dangerous, genetic variants. 
Again, within the Barbaric group we have analysed 
how these common genetic changes affects the 
behaviour of hPSCs and this led us to identify culture 
conditions that favour the emergence of particular 
variants. This provided critical information on how 
to prevent these genetic changes from emerging as 
well as what might be happening in the cell which 
allowed it to grow better than less genetically altered 

cells. By identifying a molecular mechanism of such 
competitive interactions, we were able to devise new 
culture conditions to minimise the dominance of 
recurrent variants in expanding hPSC cultures, which 
will have major benefits for all groups growing  
such cells. 

	■ Through industrial collaboration, with Broken Strings 
Biosciences, the Barbaric team have been able to 
produce an atlas of where in the genome, these 
changes tend to occur and possibly why. 

	■ Collaborating across the hub (Barker, Ghevaert & 
Barbaric) and externally with academic partners and 
through associated studentships (Barbaric/Oh), we 
have shown that these genetic variants don’t just 
change how the cells grow in the lab, but also affect 
their ability to turn into different cell types which is 
clearly critical in any work looking to translate such 
cells to patients. 

	■ As an alternative approach to assessing the 
significance of genetic variants in these cells and what 
culture conditions favour them, the Merkle group has 
developed novel culture strategies and bioinformatic 
tools to do this using a computational approach. This 
has allowed us to test more than 30 different culture 
conditions and identify which conditions favour the 
development of genetic variants and which tend to 
prevent this from happening. 

	■ Work within the Reik group identified recurrent 
changes in the epigenome, which consists of a series 
of factors (e.g. chromatin) that sits on the DNA and 
controls gene expression. Whether these recurrent 
changes in the epigenome map on to those seen in the 
genome is still unclear. 

	■ Within our manufacturing theme, the Thomas group 
have developed a novel statistical method, which has 
allowed us to identify predictors in the manufacturing 
process which are critical for the efficient translation 
of lab-based approaches to clinical production. This 
work has attracted significant interest from industry as 
it has the potential to greatly reduce the time needed to 
manufacture new hPSC products. 

	■ These techniques developed by the Thomas group 
have now been used within the industry to support 
clinical development of several products including 
megakaryocyte (MK) differentiation. 

Figure 2; Heatmap summarising the most frequently 
detected karyotypic aberrations in hPSCs. Image adapted 
from Stavish et al (2024) Stem Cell Reports
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	■ The Ghevaert group systematically optimised the 
process for genome editing of hPSCs (both knocking-
in and knocking-out gene targets of interest) which 
led to collaborations with academics, industry, and 
government organisations, including work on COVID19. 

	■ The Barker group have developed a platform 
for testing the immunogenicity of hESC-derived 
dopaminergic neurons, in partnership with the  
Jones group and “UKRMP Immunogenicity Platform” 
immunology project and have shown that such DA 
precursors behave similarly to their human foetal 
counterparts. Namely these cells seem not to drive 
a major immune response which would mean that 
in the clinic, long term immunosuppression would 
not be needed in patients grafted with such cells. We 
have also manipulated these cells to make them less 
immunogenic (e.g. by knocking out a major immune 
molecule MHC-Class I) and then seeing what effect 
this had on them turning into the dopamine cells we 
need to treat people with parkinson’s. To date knocking 
MHC class 1 out has no major effects on this  
(Figure 3). 

	■ In addition to this work directly influencing the 
ongoing STEMPD clinical trial for the treatment of 
Parkinson’s, being led by the Barker group, it has also 
highlighted the significant technical challenges when 
trying to assess immune responses in animal models 
models that have been given the human immune 
system (so called humanised mice). This work has 
laid the foundations for ongoing research with grant 
applications submitted to further these initial findings.

Figure 3: Immunofluorescence analysis of day 45 mesDA neurons showing representative images of RC17 control (ctrl), MHC-I knockout clones (KO1 
and KO2. The floor-plate marker FOXA2 is shown in red, the dopaminergic neuronal marker TH in green and the mature neuronal markers MAP2 and 
TUJ1 are shown in grey. The merged images are used for visualization of the co-localisation of the markers. 
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Networking activities: 
Networking has been a central pillar in the success 
of PSEC. As a team we have driven many activities 
to broaden our network and support the wider UK 
Regenerative Medicine field including: 

	■ Working jointly within UKRMP to host collaborative 
events between hubs and projects, such as the 
“Regenerative medicine meets mathematical 
modelling: Discovering symbiotic relationships” 
workshop (Oxford Jan 2019), the “Collaboration and 
Career Progression” training programme held virtually 
in 2021 and several Mentoring and Mock interview 
events over the years to support the ECR career 
progression pipeline. 

	■ Exhibiting jointly at events to promote the UK 
regenerative medicine landscape more broadly, these 
have included the Tissue and Cell Engineering Society 
(Virtual Conference 2021) and the Till and McCulloch 
Meeting (Virtual conference 2021) which led to the 
establishment of the “MRC/ Canadian Stem Cell 
Network (SCN) Exchange Programme” and recently 
relaunched its second round of funding. 

	■ Working with external organisations such as the 
Canadian SCN has been an integral part of our Hub. In 
addition, we have also worked closely with the British 
Pharmacological Society to jointly run a workshop on 
the “Safety of stem cell-derived therapies” (Oct 2019), 
with the Cell and Gene Therapy Catapult, to address 
issues relating to “IP and freedom to operate” (Jan 
2020) and with The British Society for Gene and Cell 
Therapy (BSGCT) to engage with industry as therapies 
progress to clinic (Jun 2023). 

	■ Working internationally to promote best practice 
such as with the International Society for Stem Cell 
Research (ISSCR) where Barbaric led the working 
group on genetic stability contributing heavily to 
the new “Standards for Use of Human Stem Cells 
in Research”. These efforts have been expanded 
further as PSEC leads on an international effort to 
develop a White Paper following an event in May 
2024 which brought together specialists, including 
those in hPSC biology, genetic stability, cancer, natural 
human genomic variation and artificial intelligence, 
to determine how we can predict the functional 
significance of genetic variants for applications of 
hPSCs in the future. 
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A sustainable future: 
PSEC researchers at all levels have engaging 
collaboratively across the UKRMP network, with 
industrial partners and academic groups to develop 
ongoing research partnerships to support the 
development of cell-based therapies. This has resulted in 
significant ongoing grant income (>£3.5Million) that will 
continue to progress the Regenerative Medicine field. 

However, as an alternative sustainability strategy, PSEC 
has worked with facilitators from the Commercialisation 
and Impact Team at the University of Sheffield, and 
established a spin out company in September 2022, 
Regenerative Cell Therapy Consulting (Regen CTC) 
Limited to support early translational scientists to 
navigate the road from bench to clinic. 

Our market discovery, undertaken via the UKRI Lean 
Launch Programme, identified a significant knowledge 
gap when it comes to institutional support to translate 
Regenerative Medicines to the clinic. Regen CTC has 
brought together a network of academics, with real world 
experience of doing just that, established as a team 
under UKRMP, which aims to help fill this gap,  
and support a growing industry. 

PSEC Principal Investigators: 
	■ Prof Roger Barker, University of Cambridge (Director) 

	■ Prof Cedric Ghevaert, University of Cambridge  
(Deputy Director) 

	■ Dr Florian Merkle, University of Cambridge 

	■ Prof Serena Nik-Zainal, University of Cambridge 

	■ Prof Robert Thomas, Loughborough University 

	■ Prof Ivana Barbaric, University of Sheffield 

PSEC Alumni: 
	■ Dr Annabel Curle, alumnus associate PhD Student 
now Post-Doctoral Researcher at the University of 
Cambridge. 

	■ Dr Sarah Howlett, an associated Post-Doctoral 
Researcher continues within the Barker/Jones 
laboratories supporting the Parkinson’s projects 
(including the STEM-PD Trial) at the University of 
Cambridge. 

	■ Dr Cathy Beltran-Rendon, alumnus associate 
PhD Student and Post-Doctoral Researcher at 
Loughborough University, now Bioprocess Engineer 
with Safi Biotherapeutics. 

	■ Dr Katie Glen, alumnus Post-Doctoral Researcher at 
Loughborough University became Associate Director of 
Research and Development at Safi Biotherapeutics and 
Director of Advanced Bioprocess Services. 

	■ Miss Gabriele Gelezauskaite, as an associated PhD 
Student, is continuing with her studies at the University 
of Sheffield. 

	■ Dr Zoe Hewitt, alumnus Project Manager, University 
of Sheffield now, Co-Founder, Chief Executive Officer, 
and Lead Quality Management Specialist Consult at 
Regenerative Cell Therapy Consulting. 

	■ Dr Owen Laing, alumnus associate PhD Student, 
University of Sheffield now Post-Doctoral Researcher, 
University of Sheffield. 

	■ Dr Theodore Wing, alumnus associate PhD Student 
and Post-Doctoral Researcher, University of Sheffield. 

	■ Dr Duncan Baker, University of Sheffield/ Sheffield 
Children’s NHS Foundation Trust continues as a senior 
cytogeneticist. 

	■ Dr Christopher Price, alumnus Post-Doctoral 
Researcher, University of Sheffield now Senior Scientist 
at Stem Cell Technologies, Vancouver. 

	■ Miss Swetha Sirinivasaraghavan, alumnus Research 
Assistant, University of Cambridge, now PhD Candidate 
in Canada. 

	■ Dr Dylan Stavish, alumnus Post-Doctoral Researcher, 
University of Sheffield now Senior Scientist at Stem 
Cell Technologies, Cambridge. 

	■ Dr Shamma Qarin, alumnus associate PhD Student 
now holds a position at Insmed Incorporated. 

	■ Dr Preeti Holland, alumnus Post-Doctoral Researcher, 
Loughborough University. 

	■ Dr Venkat Pisupati, alumnus Post-Doctoral Researcher, 
University of Cambridge.  
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	■ Dr Amie Waller, an associated Post-Doctoral 
Researcher continues within the Ghevaert Laboratory 
supporting the MK clinical trial activities at the 
University of Cambridge. 

	■ Dr Amanda Evans, alumnus Post-Doctoral Researcher, 
University of Cambridge, now retired. 

	■ Dr Shaline Fazal, alumnus Post-Doctoral Researcher, 
now Laboratory Manager at University of Cambridge. 

	■ Mr Iman Mali, University of Cambridge, alumnus 
Research Assistant, now PhD Candidate at University 
of Cambridge. 

	■ Prof Wolf Reik, alumnus Co-I, Babraham Institute 
is now Director of the Altos Cambridge Institute of 
Science. 

	■ Dr Yang Cao, Babraham Institute and Dr Benjamin 
Vallin, University of Cambridge were both Post- 
Doctoral Researchers associated with our linked UKRI/
Rutherford Fund Fellows. With these fellowships 
having ended, they are no longer associated with 
our Hub. Dr Cao continues to work at the Babraham 
Institute with Dr Stefan Schoenfelder whilst Dr Vallin 
has now moved to Oxford, to work with Professor 
Richard Wade-Martins at the Oxford Parkinson’s 
Disease Centre. 

	■ Dr Maria Rostovskaya, alumnus Post-Doctoral 
Researcher, Babraham Institute, has now been 
awarded a Researcher Co-I position at Babraham 
Institute, working towards an independent fellowship. 

	■ Dr Moyra Lawrence, alumnus Post-Doctoral 
Researcher, University of Cambridge is now an 
Independent Research Fellow at CIRA, Japan. 

	■ Dr Minjung Song, alumnus Post-Doctoral Researcher, 
University of Cambridge now Senior Scientist at 
Crescendo Biosciences. 

	■ Dr Hanif Ghanbar, alumnus Post-Doctoral Researcher, 
Loughborough University now a Cell and Gene therapy 
bioprocess development scientist, at GSK. 

	■ Dr Marta Milo, alumnus co-PI, University of Sheffield 
now Research Data Science Lead, Biostatistics & 
Combinations in Oncology R&D at AstraZeneca. 

	■ Dr Mark McCall, alumnus co-PI, Loughborough 
University now Quality Site Lead at Norbrook 
Laboratories Ltd, Belfast. 

	■ Mrs Mercy Suchanek (Danga), alumnus Research 
Assistant, University of Cambridge now Procurement 
Manager at Oncologica UK. 

	■ Dr Antigoni Gogolou, alumnus Research Technician 
now Postdoctoral Researcher at the University of 
Sheffield. 

	■ Mr Thomas Mattimoe, alumnus Research Technician, 
University of Sheffield now PhD Candidate at Centre 
for Genomic Regulation, Barcelona after being an R&D 
Scientist at Stem Cell Technologies. 

Associated UKRI/Rutherford Fund Fellows: 
	■ Dr Stefan Schoenfelder, is now a Babraham Institute 
Career Progression Fellow within the Epigenetics 
Department and co-founder of the biotech/functional 
genomics spinout Enhanc3D Genomics. 

	■ Dr Wei-Li (William) Kuan is now head of biology at the 
Alborada Cambridge Drug Discovery Institute. 

	■ Dr Ferdinand von Meyenn, alumnus UKRI/Rutherford 
Fund Fellow, Kings College London now Assistant 
Professor at ETH Zurich. 
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Immune test for stem cell therapies  
The host immune response is one of the biggest 
barriers to the effective, long-term clinical translation 
of regenerative medicines such as stem cell therapies. 
Developing a platform for testing whether a treatment 
will cause a host immune reaction will make it more 
efficient to progress these therapies through the clinical 
pipeline. It can also give researchers and clinicians a 
better idea of how they expect patients to respond to 
stem cell transplants.  

Dr Annabel Curle at the University of Cambridge is 
working on a cross-cutting immunology project to 
develop a platform to measure the ability of stem 
cells to provoke an immune response, known as their 
immunogenicity. The platform would measure the 
immunogenicity of stem cells in vitro, by co-culturing the 
stem cells with different types of immune cells and then 
running functional assays, to see how the immune cells 
respond. These assays include studying gene expression 
changes, to understand the likelihood of immune 
rejection after a transplant or a graft.  

Dr Curle and her team (in the Jones and Barker labs, 
Cambridge) carried out the tests on dopaminergic 
neuron progenitor cells (DA-NPCs), a type of human 
stem cell-derived product that has recently entered 
clinical trials for people with Parkinson’s. Parkinson’s is 
a neurodegenerative disease caused by the progressive 
loss of neurons that produce dopamine. It is hoped 
that transplanting DA-NPCs that can go on to develop 
into replacement neurons that produce dopamine can 
improve motor function, and thereby slow or halt the 

movement-related symptoms of Parkinson’s. However, it 
is vital to first test whether a transplant might provoke an 
unwanted immune response and Dr Curle’s platform to 
measure the immunogenicity of these cells would allow 
the researchers to do this. 

The results were intriguing. Dr Curle found that these 
DA-NPCs did not provoke any significant immune cell 
activation in the assays, but instead that the DA-NPCs 
possess immunoregulatory qualities, suppressing T-cell 
activation (T-cells being the cell type responsible for 
cell-mediated rejection). These results showed that 
aggressive immunosuppression may not be required 
following the transplantation of these stem cell-derived 
neural cells. It also meant that researchers may not 
need to genetically modify stem cell therapies to reduce 
immunogenicity in the ‘next generation’ of stem cell 
products, as the platform offers an opportunity to 
anticipate how we may expect patients to respond to 
these therapies.  

The project demonstrates how platforms such as 
the one being developed by Dr Curle are necessary to 
comprehensively investigate the immunogenicity of 
stem cell therapies, to ensure their clinical safety and 
efficacy. The PSEC Hub of UKRMP brings together the 
multidisciplinary expertise and infrastructure required 
to do this, in order to accelerate progress towards 
translating the benefits of stem cell therapies for  
patient benefit.  

“The platform has offered 
great opportunities for 
me as an early career 
researcher to present my 
work and network with 
the regenerative medicine 
community” 

Dr Annabel Curle, 
University of Cambridge UKRMP PSEC Hub 

Genetic variation and its effects on stem cell 
populations 
Studying how stem cell populations behave in prolonged 
culture conditions has led to new insights into how they 
differentiate, which may be linked to their underlying 
genetic variation. Building on previous research, 
these advances in knowledge can help suggest new 
approaches for removing genetically variant cells 
from stem cell culture for research and future clinical 
applications.  

Cardiomyocytes, or heart cells derived from human 
stem cells are a powerful tool for modelling disease 
and developing stem cell-based therapies. Producing 
cardiomyocytes requires stem cells to be cultured 
for prolonged periods of time. Unfortunately, this 
extended culture predisposes the stem cells to acquire 
genetic changes, such as the gain of an extra arm 
of chromosome 1, known as +1q. These genetic 
changes in turn can alter the signalling pathways that 
are responsible for controlling the way the stem cells 
differentiate into cardiomyocytes.   
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Dr Theodore Wing at the University of Sheffield is 
studying genetic changes in stem cells to understand 
more about the cellular signalling processes. The team 
found that genetic changes in the cells with a +1q defect 
caused the abnormal activation of a pathway called the 
Wnt signalling pathway. They also showed that abnormal 
Wnt signalling has long-lasting impacts on the stem cell, 
and their ability to form specialised cell types such as 
cardiomyocytes, as well as the function of these cells 
once differentiated.  

The research has emphasised the concerns 
surrounding the presence of genetic variation on 
stem cell-based therapies, with even extremely small 
contaminations of mutant cells significantly impacting 
the ability of genetically normal cells to form functional 
cardiomyocytes. The team will use these insights to 
develop new approaches to investigate cell culture 
conditions and how they impact genetic variation in stem 
cells, thereby improving ways to grow human stem cells 
safely for research and clinical applications. 

“Being a member of PSEC and UKRMP has 
allowed me to present my work, to meet and 
engage with fellow researchers in a wide 
range of fields. This has greatly helped me 
to see the broader scope of the generation 
of potential regenerative medicine therapies 
and has aided me to see where my work 
fits in with this picture and how to tailor my 
research to the greatest benefit” 

Dr Theodore Wing 
University of Sheffield, UKRMP PSEC Hub

Support for translating regenerative  
cell therapies 

As with all medicines, advanced therapy medicinal 
product (ATMPs) like cell therapies must be evaluated in 
clinical trials before they can be routinely administered 
to patients. For these complex medicines the clinical 
translation journey is often a long and demanding 
process, as  ATMPs have to be shown to be consistent, 
safe and effective before they can be administered to 
patients enrolled in these clinical trials. Regen CTC, a 
spin-out established in 2022 by UKRMP experts, provides 
bespoke support for researchers as they navigate this 
translational journey.  

The process of translating cell therapy products into 
patient treatments is a steep learning curve for many 
researchers embarking on clinical development. 
These areas include developing quality management 
systems, establishing or partnering with clean room 
(Good Manufacturing Practice (GMP)) facilities, process 
development of research protocols and the development 
of key quality indicators. The PSEC executive team, 
led by Dr Zoe Hewitt at the University of Sheffield 
undertook a market discovery journey, supported by the 
commercialisation team at the University of Sheffield, 
and identified that there was a significant and immediate 
need for this kind of guidance. As a result, the team 
launched a spin-out company called Regen CTC in 2022, 
which provides clients with access to a network of UK 
experts with real world experience of translating human 
pluripotent stem cell derived cell therapies to the clinic.   

With the ability to access a large network of UK 
academic specialists through the UKRMP network, 
the team can facilitate a variety of activities, helping to 
share best practise and knowledge. For example, early 
implementation of document and quality management 
systems have enabled therapy developers to capture 
critical information early in the translational journey. This 
in turn ensures that public funding is maximised and that 
the products being developed are more robust and hence 
attractive to investment opportunities as they progress. 

“The PSEC executive have supported me 
to undertake this discovery journey and 
establish Regen CTC. The UKRMP network 
more broadly has also been supportive, 
both as key opinion leaders and as potential 
clients of the services we offer.  The market 
discovery journey presented a fantastic 
opportunity to promote the UKRMP 
internationally and its reputation, as the 
background to Regen CTC, has provided our 
company with an incredible platform from 
which to grow” 

Dr Zoe Hewitt, Project Manager  
UKRMP PSEC and Co-Founder and CEO of Regen CTC  



15

2.2 Engineered Cell Environment (ECE) Hub

The UKRMP Engineered Cell Environment (ECE) Hub 
sought to regenerate and repair damaged organs (liver, 
joint and lung). Our hub brought together stem cell 
scientists and tissue engineers with clinician scientists 
familiar with leading clinical trials and the pathways to 
translation. 

The Hub Director was Professor Stuart Forbes 
(University of Edinburgh, Liver theme) and the 
Deputy Director Professor Alicia El Haj (University of 
Birmingham, Bone and Joint theme). Professor Sam 
Janes (University College London) lead our Lung theme. 
Other partner institutions were Kings College London and 
the University of Cambridge. 

The ECE Hub sought to promote tissue regeneration 
and repair in liver, lung and joints using two 
translational strategies: 

1.	Developing cell therapies for damaged organs: 
to improve transplanted cell performance by 
understanding how cells behave in the environment 
they engraft. 

2.	Promoting the body’s own (endogenous) repair of 
damaged organs: using human stem cells, we created 
automated screening assays to study the behaviour of 
stem cells and identify signals that promote stem cell 
expansion and differentiation, optimising repair. 

We used laboratory and animal models of disease to test 
these strategies (Figure 1). 

To improve endogenous repair and cell therapies 
the UKRMP ECE Hub tackled three translational 
challenges: 

	■ Understanding and improving the physical properties 
of aged and injured tissue niches 

	■ Developing artificial environments which act as 
regenerative signals to support the formation of new 
tissue and repair damaged tissue 

	■ Discovery and development of new targets to promote 
the body’s own tissue repair mechanisms 

We selected three clinical exemplars - liver, joint and lung 
repair – with maximal potential for tangible clinical gains. 

We continue to work to translate our findings into the 
clinic and have been successful in securing follow-on 
funding to refine our small molecule hits, initiate clinical 
trials and further understand the stem cell niche and how 
to improve both engraftment of exogenous cells and 
promote endogenous repair. Two of our technologies 
have been patented, there have been 4 related spin-out 
companies and many of our tools have been made 
available through publication. We have patented a new 
therapeutic intervention (WO2021156519A1, El Haj 
& Habib) a tissue regeneration patch to repair lost or 
damaged bone. A first in human cell therapy study for 
biliary disease is planned for 2025. We have published 
a novel single cell trajectory inference applied to 
image-based Cell Painting data, the first time this has 
been used for drug screening. The ECE Hub have had 
160+ publications in journals including Nature, Nature 
Medicine, Nature Materials and Cell Stem Cell. 

Figure 1. Schematic of the ECE Hub Strategy.
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Scientific Achievements 
Liver (Forbes, Hay, Carragher, Habib, Franklin) 
In the UK, liver disease is the third biggest cause of 
premature deaths. Liver transplantation remains the 
only definitive treatment of end stage liver disease and 
demand far outweighs availability of donor livers. 

Cell therapies hold some promise: the use of hepatocytes 
(functional liver cells) to treat metabolic liver disease 
has been demonstrated in the clinic. We are addressing 
some of the barriers to widespread application of cell 
therapies, including cryopreservation (freezing and 
thawing of cells), limited cell engraftment, immune 
rejection and poor long term function. 

Improving endogenous liver repair 
We have developed a high throughput screen for 
proliferation and differentiation of embryonic stem cell 
derived liver progenitor cells. Using this model, we have 
screened 1,280 FDA approved drugs (Hay/Carragher), of 
which 6 showed a significant increase in foetal albumin 
(AFP) secretion (a key function of healthy liver) and 
inhibition of differentiation into metabolically active

hepatocyte-like cells. We also established a novel 384-
well high content Cell Painting assay using HepaRG cells 
and a multiparametric image-based phenotypic signature 
to classify compound hits promoting liver cell progenitor 
and differentiation phenotypes (Carragher). Importantly, 
small molecule hits that promoted differentiation in 
screening assays were replicated in human primary 
hepatic progenitor cells. Optimised hepatocyte 
progenitor cell media are being developed for potential 
GMP use for cell expansion prior to first in human 
transplant testing. 

A chemically defined cell growth media and recombinant 
proteins to promote differentiation of hepatic progenitors 
has been developed (Hay). The definition of the cell 
culture niche improves the quality of engineered 
liver tissue products, allowing the team to automate 
manufacture of liver tissue so that the technology could 
be scaled for use in vivo. As a result of this work, a patent 
was granted exclusively licensing the technology to 
Biolamina. The growth media is commercially available 
through Stem Cell Technologies and is being used in the 
development of new products for Prof Hay’s  
spinout Stimuliver. 

We developed materials (nanoparticle and bandage) that 
deliver regulated Wnt (Habib). The activity, reproducibility 
and safety and efficacy have been tested in mouse 
models of liver disease. 

Senescence is a cellular stress response, which 
transmits to neighbouring cells affecting the function 
of donor cell grafts. We have developed a model of 
senescence in order to identify therapeutic targets to 
inhibit this transmitted senescence and improve cell 
engraftment (Forbes). These targets are being tested in 
transplant models (Figure 2). 

Joint (El Haj, McCaskie, Birch, Habib)
Osteoarthritis (OA) is a major worldwide healthcare 
burden that can severely impact patients making it 
difficult for them to walk, sleep and work. OA causes 
progressive breakdown of articular cartilage and bone, 
often leading to severe joint pain and poor function. 
Traditional treatments include joint replacement or 
‘key-hole’ surgery in less severe cases to either clean 
the site or to encourage natural inflammation, whereby 
the patient’s own cells help repair the damaged tissue. 
Injectable therapies, containing pre-optimised cells, can 
be administered at the same time. UKRMP ECE Hub 
research aimed to understand how the progenitor cells 
within the cartilage and bone tissues in the joint can be 
recruited and instructed to promote.

We have developed an improved 3D model platform 
for cartilage formation (chondrogenesis) using human 
progenitor cell lines to mimic and maintain tissue 
functions such as asymmetric division, migration and 
differentiation which are key features of cartilage and 
improve cell engraftment (El Haj). 

Figure 2. Paracrine senescence model.
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This model is being optimised by choosing the Centre 
for Drug Screening in collaboration with Professor 
Neil Callagher to identify potential drug candidates for 
regenerative therapies. In addition, the approach of using 
key agonists in novel shear gel delivery systems is being 
translated to our mouse injury models to test for clinical 
relevance and potential use for cartilage repair (Figure 
3). Using the Wnt-induced osteogenic tissue model 
(WIOTM) we screened for complex inductive effects of 
potential drug targets on both the progenitor proliferation 
and maintenance as well as differentiation and 
maturation into cartilage and bone (McCaskie/Birch). 
Finally, based on our publication in Nature (Okuchi Y et al, 
2020), we have patented a new therapeutic intervention 
to repair lost or damaged bone (El Haj/Habib). 

Lung (Janes/Watt) 
Respiratory diseases affect one in five people in the 
UK and related hospital admissions have risen at three 
times the rate of all other admissions. Lung airways 
transport air to the alveoli (small air sacs) where gas 
exchange occurs. The epithelial cells that line the airway 
are essential for protecting the lungs and respond to 
insult through a rapid process of repair and regeneration. 
However, abnormal repair processes can lead to 
irregular organisation and integrity. Our goal was to find 
novel factors that influence stem cell activation and 
differentiation promoting regeneration and repair  
to restore normal function and protect against  
further damage. 

In order to identify compounds that increase basal 
cell proliferation and stemness we have established 
a robust assay for 2D and 3D high throughput (lung 
organoid) screening. Cell culture conditions of human 
bronchial epithelial cells (HBEC) have been optimised. A 
combination of three inhibitors have been identified as a 
positive control to increase stemness and proliferation. In 
addition, 3D tracheospheres containing 3 lung cell types 
– basal, ciliated and goblet cells, were used to assess 
stem cell growth and differentiation of lung epithelial 
cells under physiologically relevant conditions (Figure 4). 
We selected our most promising compound to be tested 
in a mouse model. We successfully demonstrated that 
treatment with the compound induced the expression of 
targets crucial for proliferation in both the trachea and 
lungs in vivo. 

Figure 3. 3D chondrogenic and osteogenic models for regenerative platforms and translation to therapy for cartilage and bone repair 
(Loundes et al 2019; Okuchi et al, 2020).

Figure 4. 2D and 3D Lung organoid screens.
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Collaboration 
The ECE hub was intrinsically collaborative across 
scientific disciplines. We developed numerous productive 
collaborations with industry, including using machine 
learning to predict drug activity in laboratory models of 
liver disease. 

There has been considerable knowledge exchange 
between laboratories across our hub despite the 
challenges faced from the COVID-19 pandemic.  
Of particular note are: 

	■ The testing of wnt particles and bandages across 
therapeutic area, screening platforms and in vivo 
testing. 

	■ The establishment of high throughput screens (lung, 
liver and joint), sharing of compound libraries and 
analysis expertise.

Networking 
The ECE Hub worked closely with other hubs to 
develop collaborations across and outwith the UKRMP 
network. For example, the “Regenerative medicine 
meets mathematical modelling: Discovering symbiotic 
relationships” workshop (held in Oxford in January 
2019) has led to several pump priming and collaborative 
research project and reviews. 

In March 2022 we held a cross-hub High Throughput 
Screening workshop at The Frances Crick Institute in 
London, with talks from both industry and academia. 
Four early career participants pitched new high 
throughput models to a panel of academic and industry 
experts. 

In addition, the Hubs developed partnerships with 
industry and sought to engage the wider academic 
and commercial community, promoting UKRMP skills 
and expertise at key scientific meetings, including the 
very successful UKRMP Regenerative Medicine 2023 
conference in Edinburgh. 

Hubs also interacted through annual scientific meetings 
and a joint training programme for early career 
researchers “Collaboration and Career progression”, 
which helped hub members develop in their careers  
in the biotechnology industry and academia. 
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New regenerative cartilage model reveals 
potential novel drug targets for  
osteoarthritis therapy
New treatments for osteoarthritis have been limited by 
the lack of cartilage tissue models that can accurately 
represent the in vivo environment needed for screening 
new treatments for therapeutic potential. A new 3D 
model for cartilage tissue has the potential to enable 
high-throughput screening, that can help identify 
treatment candidates with a higher chance of  
therapeutic success.  

Professor Alicia El Haj and her team at the University 
of Birmingham are developing a new 3D model of 
cartilage tissue that can be used to test new treatments 
for osteoarthritis. Osteoarthritis is a degenerative joint 
disease that results from the breakdown of cartilage and 
is one of the leading debilitating diseases within the adult 
population. Damaged cartilage has limited capacity for 
self-repair, so there is an urgent need for new drugs and 
therapies that can delay the progression of osteoarthritis. 
At the moment, screening assays for new treatments 
are carried out in the lab using a single layer of cartilage 
cells. This 2D model does not accurately represent 
the cartilage structure and associated support cells 
that work together in the tissue microenvironment of a 
living joint. Therefore, many of the seemingly promising 
treatments identified using traditional assays in the lab 
do not lead to treatments that can be translated to the 
clinic for treating osteoarthritis.  

The researchers have developed a 3D regenerative model 
of cartilage which maintains both mature and progenitor 
cells that make up cartilage in an arrangement that 

is spatially organised. The model system allows the 
researchers to screen for new treatments that can 
induce the formation of cartilage. The next step would 
be to scale up the model and transfer the model to a 96-
well plate format to enable screening candidate drugs in 
high-throughput assays. This is exactly what they did, in 
collaboration with Professor Neil Carragher and the Drug 
Screening Centre at Edinburgh University, using liquid 
handling systems and automated imaging techniques.  

A 57 candidate library was then screened for potential 
compounds which promote different cellular processes 
such as proliferation, differentiation and migration 
of cartilage progenitor cells. The high-throughput 
system would allow the researchers to observe these 
processes taking place, in response to various potential 
compounds. The team identified several drug targets for 
further validation, which appear to promote the cartilage 
repair process. These results showcase how the 
platform has potentially enabled the future development 
of a new drug for treating osteoarthritis. 

The fate of lung stem cells: a 3D model for 
screening new drugs
Failure to repair damage to lung epithelia can lead to 
severe lung disease, and once this happens, there are no 
treatment options to reverse the damage or repair lung 
function. Activating stem cells in lung epithelium offers 
a promising approach for developing new therapies to 
tackle this problem but requires a deeper understanding 
of how cell fate decisions are regulated in airway 
epithelium.  

Professor Sam Janes, Dr Yuki Ishii and Dr Jess Orr 
use 2D and 3D patient-derived airway cell cultures to 

investigate stem cell proliferation and differentiation. 
Understanding what type of cell a stem cell will 
eventually differentiate into, and how this process could 
be manipulated using the right biochemical signals at the 
right time, is key to harnessing the power of stem cells to 
repair damaged tissue. 

The team have already established a 384-well plate 
format assay to screen compounds for their effects on 
airway cell proliferation. They have performed this higher-
throughput screen, testing around 1400 compounds- 
including 1276 FDA-approved compounds, and identified 
several ‘hit’ compounds. These are compounds that 
appeared to increase the number of primary airway 
epithelial cells. Next, the team validated these hit 
compounds in multiple patient-derived cell cultures to 
confirm that they do indeed increase cell proliferation 
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and that the compounds had a concentration-dependent 
response. The researchers also showed that the hit 
compounds increased 3D lung organoid size. The 
team are currently developing a mouse model of lung 
regeneration to validate these hit compounds in vivo and 
are also investigating the cell signalling mechanisms that 
may be involved. 

The group have also created a reporter gene system 
to monitor airway epithelial differentiation in live cell 
cultures. They have validated these bioluminescence-
based reporter constructs in patient-derived air-liquid 
interface and lung organoid cultures. The reporter 
constructs are being made available on the Addgene 
platform, so that they can benefit the wider academic 
community.  

These new methodologies are valuable tools for 
identifying drugs that can regulate the stem cells of the 
airway epithelium. Promising drugs identified through 
these assays could be developed into therapeutics to 
accelerate the repair and regeneration of damaged 
airway epithelium.  

From liver in a dish to implantable human liver 
tissue: stem-cell derived liver models allow 
researchers to recreate human liver biology 
Engineered human liver tissue derived from human 
stem cells has the potential to build more predictive 
human disease models, and ultimately treat human liver 
disease. Produced at scale from a renewable cell source, 
the engineered liver tissue could improve human drug 
development and repurposing, and in the future may 
provide an alternative source of human tissue to treat 
failing human liver function.  

The liver is the largest solid organ in the human body, 
with an important role in human health. It is responsible 
for over 500 functions, including processing digested 
food and the detoxification of foreign substances. Liver 
physiology and disease is often studied in the laboratory 
using cells derived from donor organs or liver cancer cell 
lines. However, both these sources of cells have inherent 
disadvantages; the former eventually runs out while the 
latter can have chromosomal abnormalities.   

Professor David Hay and his team at the University 
of Edinburgh have been using human stem cells to 
grow liver tissue in the lab. These cell populations are 
capable of indefinite growth under carefully maintained 
conditions in the lab, and the team have developed 
reliable methods for building human liver tissue using 
these cells. These engineered liver tissues appear to 
behave in a similar way to the liver found in the human 
body. As such the tissue could be used to better model 
and ultimately treat human liver disease. The team have 
developed automated 2D and 3D systems to produce the 
engineered human liver tissue at scale.   

The close similarity between the engineered liver tissue 
and actual liver tissue is due to the use of chemically 
defined cell growth media and recombinant proteins 
in the cell culture system. The definition of the cell 
culture niche has improved the quality of the engineered 
liver tissue product, allowing the team to automate its 
manufacture so that the technology could be scaled for 
use in vivo. As a result of this work, a patent was granted 
exclusively licensing the technology to Biolamina, the 
commercial provider of the extracellular matrix that the 
cells grow on. In addition, these successful outcomes 

attracted further investments from Novo Nordisk 
Foundation, Old College Capital, and Export & Investment 
Fund of Denmark as well as non-dilutive grant funding 
from Innovation Foundation Denmark, resulting in the 
formation of a spin-out company called Stimuliver.  

“Funding from the UKRMP1 Niche and 
UKRMP2 ECE hubs, along with the UKRMP 
Disease/Systems Focussed Programme 
award as PI, allowed me to develop our 
interdisciplinary research (Biology, Chemistry, 
Engineering and Medicine) to the point 
of translation. We are currently building a 
prototype liver implant for the clinic and 
have currently secured >€3 million euros of 
investment and non-dilutive grant funding” 

Professor David Hay 
University of Edinburgh, UKRMP ECE Hub  
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2.3 Smart Materials Hub   

Director: Professor Molly Stevens 
University of Oxford and Imperial College London

Deputy Director: Professor Felicity Rose 
University of Nottingham

Partner Institutions: University of Oxford, Imperial  
College London, University of Nottingham, University  
of Southampton, University of Edinburgh, King’s  
College London, University of Glasgow, University  
of Manchester, University of Liverpool

The core goals of the UKRMP Smart Materials Hub are: 

1.	to develop new types of biomaterials and fully evaluate 
their safety and efficacy.

2.	to demonstrate clinical translatability and move 
towards real-world applications in the musculoskeletal 
system, eye and liver 

3.	to actively foster partnerships with manufacturing, 
commercial, and regulatory bodies to ensure the 
effectiveness of our translational process

4.	to develop the Hub itself into an effective body for 
translational research that can guide and train the next 
generation of regenerative medicine scientists.

The Hub has made significant progress over the past 
five years, achieving exciting early scientific success with 
contributions from all 9 institutions. Scientific outputs 
from these institutes include 12 granted international 
patents and several more pending applications and over 
180 peer-reviewed journal articles.

The Hub is now well-positioned to enter the next phase 
of development, in which we will continue to evaluate 
efficacy of our materials in disease models of the eye, 
liver and musculoskeletal system.

The Hub has continued to strengthen links across the UK 
and international research communities, collaborating 
with the Scientific Advisory Board (SAB) and regulatory 
authorities to deliver transformative and sustainable 
technologies in the regenerative medicine industry. 

Working closely with the Safety and Immunology 
(SI) panel and the Manufacturing, Commercial and 
Regulatory (MCR) panel, the Hub continues to develop 
Target Product Profiles (TPPs) with high potential to 
maximise research translatability, addressing future 
clinical, industrial and regulatory needs. Regular progress 
review meetings have continued within each clinical 
exemplar, and key activities for the target applications 
are as follows.

Scientific Achievements
New materials for the musculoskeletal system
The collaborative research team from Southampton, 
Imperial, Nottingham and Glasgow (Marshall, 
Wojciechowski, Yang, Mata, Hasan, Vineetha, Oreffo, 
Stevens & Salmeron-Sanchez) have been investigating 
the development of innovative acellular materials based 
on 3D printed nylon, titanium and polycaprolcatone (PCL) 
scaffolds. These scaffolds were functionalised with 
biomimetic proteins, minerals and/or growth factors 
present in the bone microenvironment to enhance bone 
formation by skeletal cell populations. PCL scaffolds, 
coated with various materials, were supplied to the 
Southampton team for in vitro assessments followed 
by a subcutaneous implant study and a femur defect 
model in mice. Based on the results of these studies, the 
team selected PCL-900 octetruss scaffolds coated with 
LaponiteTM and BMP-2 (Bone morphogenetic protein 2) 
for use in an ovine femoral condyle defect model (large 
animal) at Nottingham.

The Nottingham team (Owen, Rose & Wildman) has 
developed highly defined porous microparticles based 
on pentaerythritol triacrylate (PETA) to support cell 
infiltration in vitro and is currently exploring tissue 
infiltration into defect sites in vivo and their potential to 
promote bone formation. The materials were tested at an 
ISO 10993 certified contract research organisation, and 
the team confirmed that the results aligned with their  
in-house cytotoxicity assessments.

The Imperial team has engineered 3D scaffolds 
using remote acoustic stimulation for deep zone 
cytoarchitecture (Armstrong & Stevens) (Figure 1).  
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They have also developed an electrospun osteochondral 
implant (FiHyTM) and conducted extensive in vitro 
assessments for both cartilage and bone repair in 
collaboration with the University of Pennsylvania  
(Moore & Stevens).

The Oxford team (Carr & Mouthuy) has successfully 
completed essential in vitro and in vivo studies on 
BioPatch and BioYarn. BioPatch is a synthetic degradable 
electrospun patch that promotes the rapid regrowth 
of tendon tissue, and BioYarn is made of synthetic 
degradable nanofibers that mimic a normal tendon, 
aimed at enhancing the repair of rotator cuffs. The 
Oxford team has confirmed that BioPatch has shown 
very encouraging results both in vitro and in vivo studies, 
involving small and large animal models. The team is 
now working with the Oxford Innovation team to develop 
sustainable strategies and secure funding for  
further research.

Additionally, the team has commenced a pilot in vitro 
degradation study for BioLig, synthetic degradable 
nanofibers, and collaborations with the Glasgow and 
Southampton team are underway to explore design 
variants.

The Southampton team (Dawson & Oreffo) is working on 
developing injectable nanoclay gels (Figure 2) that can 
support stem cell growth and colonization. They have 
characterized the cellular response to nanoclay, including 
how it promotes the recruitment and entry of stem cells. 
The team also studied the potential effects of nanoclay 
degradation products on stem cell differentiation. They 
have shown that nanoclay gels can promote the entry of 
stem cells to a site of injury and promote remodelling, 

which is instrumental for bone regeneration. They also 
showed that the implanted nanoclay gels are degraded 
by cells and safely processed by the body. These results 
are now being used to support a submission to the 
FDA requesting a designated classification for this 
technology. The team is investigating how to apply this 
technology for dental bone reconstruction within a newly 
awarded EPSRC Impact Acceleration Account project. 

The Nottingham team (Hasan & Mata) has been 
working on the development of a new technology for 
remineralisation of dental enamel. The team are now 
collaborating with Radboud University in the Netherlands 
to test the mineralising coating for practical dental 
applications.

The team are also moving this technology forward 
by conducting in-depth experiments to compare the 
performance of the product with commercially available 
alternatives. A spin-out company, Mintech-Bio, has been 
established to commercialise this technology.

New materials for the eye
The Liverpool team (Robinson, Bilir, Levis & Williams)  
is continuing to develop the biosynthetic corneal  
endothelial graft with a new formulation of hydrogels. 
They have assessed the cell compatibility of the 
hydrogels using a human corneal endothelial cell line 
and primary porcine endothelial cells. Work will continue 
within the recently awarded MRC DPFS project to 
enhance the mechanical properties of the hydrogels  
and develop a sterilisation method.

The Imperial team (Cunnane, Barron, Zhong, Fernandez-
Debets & Stevens) has developed 3D scaffolds with 
a patterned microstructure designed to polarise 

photoreceptor cells for retinal repair. The team has 
also optimised the electrospinning polymer scaffold 
fabrication process and successfully manufactured 
scaffolds that resemble the native human Bruch’s 
membrane. A pilot study was conducted to evaluate 
the biocompatibility of the chosen hydrogel formulation 
for the photoreceptor scaffolds. A subretinal scaffold 
delivery system has been designed and tested in an ex 
vivo porcine eye model. The King’s team (Kalargyrou, 
Lanning, Pearson & Ali) is continuing to evaluate 
the biocompatibility of these scaffolds through an 
assessment of the inflammatory and gliotic response of 
the implanted retina in mice. 

Work is progressing to assess the transplantation of 
photoreceptor and retinal pigment epithelium (RPE) 
containing scaffolds in a rabbit model. 

New materials for liver regeneration 
The Nottingham team (Lee & White), in collaboration with 
the Edinburgh team (Gadd, Ashmore-Harris & Forbes), 
has made significant progress in designing materials 
to enhance liver cell engraftment and regeneration 
(Figure 3). They have achieved controlled release of 
vascular endothelial growth factor (VEGF), IL-10, IL- 
1ra and Etanercept in vitro. The Nottingham team is 
continuing to investigate how to prolong the release of 
immunomodulatory factors from the microparticles, 
which are made with poly (lactic-co-glycolic acid) 
(PLGA) and galactose (Gal). Meanwhile, the Edinburgh 
team has established the biodistribution and dosage 
of microparticles in vivo and is currently investigating 
how co-transplanting microparticles with hepatocytes 
improves cell engraftment in mouse models. 
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Future directions 
The Hub has successfully secured £31 million in follow-
on grants from various funding bodies, enabling us to 
further advance the development of novel materials 
that mimic the natural extracellular matrix and support 
innovative treatments for a wide range of diseases and 
injuries. At the same time, we acknowledge the need 
to address complex ethical, regulatory, and practical 
challenges as the field of regenerative medicine 
continues to evolve. 

In line with our vision of nurturing the next generation 
of regenerative medicine scientists, the Hub remains 
committed to fostering collaboration between academia, 
medical practice, industry, and research funders. Our 
dedication lies in promoting interdisciplinary research 
excellence among these diverse groups, with the goal of 
facilitating a future where regenerative medicine thrives.

Figure 1. Acoustic cell patterning can be used to engineer hyaline 
cartilage with deep zone cytoarchitecture (a) High-magnification 
confocal fluorescence microscopy shows the patterned chondrocytes, 
labelled with a fluorescent membrane stain (green) for visualization. 
The patterned features were predominantly single-cell width, which is 
analogous to the cellular organization of deep zone articular cartilage 
(scale bar = 100 μm). (b) The patterned cartilage was stained with 
picrosirius red and imaged using a polarized microscope (scale bar = 50 
μm). J Armstrong et al., Advanced Healthcare Materials, DOI: 10.1002/
adhm.202200481

Figure 2. Assembly of 3D protein patterning within nanoclay colloidal 
gels. The system supports the assembly and patterning of structures 
of a range of size and shapes as defined by the initial casting (scale 
bar = 200 μm). R. Ramnarine et al., Advanced Materials, DOI: 10.1002/
adma.202304461

Figure 3: IL-10 and etanercept encapsulated Gal-MPs reduce 
inflammation in vivo. IL-10 encapsulated Gal-MPs and etanercept 
encapsulated Gal-MPs were separately delivered, each with hepatocytes, 
in the AhCreMdm2flox mice model (a). Successful hepatocyte 
engraftment requires the optimal level of host injury and inflammation 
to support donor cell expansion in AhCreMdm2flox mice. Image stained 
with tdTom (transplanted hepatocytes), K19 (biliary cells) HNF4a 
(hepatocytes) and DAPI (nuclei), scale bar = 100 μm (b). Hepatocytes 
transplanted with IL-10 MPs showed down regulation of IL-1β compared 
to hepatocytes alone. Hepatocytes transplanted with etanercept MPs 
showed down regulation of IL-1β and reduced expression of IL-6 
compared to hepatocytes alone. Error bars display mean ± S.D of pro-
inflammatory gene expression of harvested liver homogenate. N=3. 
*p<0.05, significant.
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3D printed scaffolds for repairing bones  
Non-union bone fractures are typically treated using 
a bone graft to promote regeneration. However, bone 
grafts are complicated by the fact that the graft has to 
come from the patient, which may cause issues at the 
site of harvesting, or a donor, which may cause immune 
rejection. A 3D scaffold that could promote bone 
repair and then be bio-reabsorbed once sufficient bone 
regeneration has taken place would offer an ingenious 
alternative to repair non-healing fractures and critical-
sized bone defects. 

Non-union bone fractures occur when fractured bones 
fail to heal and mend after an extended period of time. 
These fractures can cause prolonged pain for patients, 
often lasting for months or even years. The clinical ‘gold 
standard’ for treating these non-union fractures is using 
an auto- or allo- graft, using either the patient’s own bone 
or bone from a donor. However, these approaches come 
with their own challenges, for example sourcing donor 
bone tissue for grafts, and the risks of immune rejection 
by the host. 

The Smart Materials Hub are developing an inventive 
approach to this problem. The project is a collaboration 
between the teams of Professor Dame Molly Stevens 
at the University of Oxford and Imperial College London, 
Professors Richard Oreffo and Jon Dawson at the 
University of Southampton, Professor Manuel Salmeron-
Sanchez at the University of Glasgow, and Professors 
Felicity Rose and Alvaro Mata at the University of 
Nottingham. Together, the teams of researchers are 
developing a bio-resorbable 3D printable scaffold 
material using stereolithography (SLA) techniques.  

This approach uses photochemical processes by which 
light causes chemical monomers and oligomers to 
cross-link together to form polymers. The approach 
would enable high-throughput and consistent 
manufacturing, and demonstrate a first in class bio-
resorbable SLA 3D printable material for bone repair. 

To do this, the team focused on key components of 
the project; developing a bio-resorbable 3D printable 
scaffold, coating the scaffold material to promote bone 
regeneration, and assessing the coated scaffolds in 
vitro, and in vivo using small to large animal models. 
The team tested three different bioactive coatings to 
promote bone regeneration and narrowed down the 
choice to a coating called Laponite, a nanoclay which 
strongly adsorbs a protein called bone morphogenetic 
protein 2 (BMP-2). BMP-2 is a key growth factor, known 
to stimulate the production of bone tissue however, 
excessive concentrations can have undesired effects. 
The team observed that the Laponite/BMP-2 coated 
scaffold promoted significant bone formation, as well as 
being biocompatible and well-tolerated in  
animal studies. 

As next step, the team will take the scaffold forward 
for testing according to the International Organisation 
for Standardisation (ISO) standard and manufacturing 
according to Good Manufacturing Practice (GMP). These 
are crucial steps towards the clinical translation of the 
scaffold as a 3D printable material for bone regeneration. 
With ISO-certification, the researchers hope that the 
scaffold can be translated clinically as potential 3D 
printable material for bone regeneration. 

“For a project focused on translation, the 
Smart Materials Hub and wider UKRMP 
have been incredibly resourceful. From 
the beginning of the project, we have 
had structured targeted product profiles 
for the materials/devices we have been 
developing, with consistent feedback 
from the Manufacturing Commercial and 
Regulatory (MCR) Panel. This has allowed 
us to make considered changes and 
design choices to the material to lower the 
safety risks of the material and improve its 
likelihood towards translation”

Dr Jonathan Wojciechowski 
Imperial College London, UKRMP Smart Materials Hub 
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Smart Materials Hub Case Studies 

Regenerating bone with nanoclay gels 
Stem cell differentiation relies on key biochemical signals 
from the local environment surrounding them. This 
environment can be difficult to replicate when developing 
therapies using stem cells, as conventional biomaterials 
struggle to retain these biochemical signals. Nanoclays 
offer an exciting solution to this problem, as they can 
form gels that bind such biochemical signals to create 
environments favourable for stem cells to colonise.  

Professor Jon Dawson at University of Southampton 
is working on developing injectable nanoclay gels to 
activate stem cells for bone regeneration. Stem cells 
can cure a variety of conditions by regenerating tissue. 
They are activated by powerful biochemical molecules 
from within their local microenvironment. Localising and 
retaining these bioactive molecules close to a healing 
site is key to the safety and efficacy of regenerative 
medicine applications. However, conventional 
biomaterials are often poor at retaining these molecules 
at the site of injury, and the molecules that stimulate the 
cells usually diffuse away.  

To address this challenge, the team have developed 
a nanoclay gel that can support stem cell growth and 
colonisation. They have characterised the cellular 
response to the nanoclay, including how it promotes 
the recruitment and entry of stem cells. The team also 
studied the potential effects of nanoclay degradation 
products on stem cell differentiation. They have shown 
that nanoclay gels can promote the entry of stem cells 
to a site of injury and promote remodelling, which is 
instrumental for bone regeneration.  

 
They also showed that the implanted nanoclay gels are 
degraded by cells and safely processed by the body. 
These results have been instrumental for progressing 
the clinical translation of the technology, in collaboration 
with Renovos Biologics, a Southampton-based spinout 
company recently launched by the team. Importantly, 
Renovos Biologics has been granted a breakthrough 
device designation for the application of this technology 
for spinal fusion operations.  

The work has also opened new possibilities and 
collaborations for understanding the interactions of 
immune cells within the stem cell microenvironment. For 
example, the team showed that the early inflammatory 
response to the nanoclay actually promoted the 
subsequent regenerative action. The team in 
Southampton are now working with researchers in Japan 
on a collaborative project to explore the early immune 
response to nanoclays as a springboard for bone  
repair processes. 

 



3. UKRMP2  
resources available  

to the community 



27

Pluripotent Stem Cells and Engineered Cells (PSEC) Hub Resources

Resource Description Hub Contact Further Information  

Genetically variant cell lines 
Matched pairs of wild-type 
and genetic variant clonal 
hPSC cell lines.

PSEC
Ivana Barbaric 
i.barbaric@sheffield.ac.uk 

Cell lines carrying a known genetic variant (or combination of variants) 
and a normal wild-type on the same genetic background. 
Some lines are available as fluorescently-labelled. 

Reference cell line 
Reference human induced 
pluripotent stem cell line and 
its gene-edited derivatives.

PSEC
Florian Merkle 
fm436@medschl.cam.ac.uk

Deeply genotypically and phenotypically characterised human induced 
pluripotent stem cell line and accompanying data, available from our 
collaborators at https://www.jax.org/jax-mice-and-services/ipsc.

Immune silent cell lines 
hPSC lines which have HLA 
Class I KO via beta- 
2- microglobulin.

PSEC
Cedric Ghevaert  
cg348@cam.ac.uk

We have a number of established lines or protocols through which the 
editing can be achieved. 

Database  Karyotyping database. PSEC
Ivana Barbaric 
i.barbaric@sheffield.ac.uk

Database of over 20,000 hPSC karyotypes and associated metadata 
(e.g. ES/iPSC, culture conditions, sex etc) that can be searched for 
potential association of genetic changes with different parameters.

Database
Database of structural and 
sequence genetic variants  
in hPSCs.

PSEC
Florian Merkle 
fm436@medschl.cam.ac.uk

Searchable online database of genetic variants in readily-available 
human embryonic stem cells (https://hscgp.broadinstitute.org/).

Code 
Computational methods for 
measuring pool balance.

PSEC
Florian Merkle  
fm436@medschl.cam.ac.uk

Annotated code to estimate the fractional abundance of cell lines within 
a pool from sequencing data.

mailto:i.barbaric%40sheffield.ac.uk%20?subject=
mailto:fm436%40medschl.cam.ac.uk?subject=
mailto:https://www.jax.org/jax-mice-and-services/ipsc?subject=
mailto:cg348%40cam.ac.uk?subject=
mailto:i.barbaric%40sheffield.ac.uk?subject=
mailto:fm436%40medschl.cam.ac.uk?subject=
mailto:fm436%40medschl.cam.ac.uk?subject=
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Engineered Cell Environment (ECE) Hub Resources

Resource Description Hub Contact Further Information  

Hepatocyte Differentiation 
media system 

Cell growth media and 
recombinant proteins to 
promote differentiation of 
hepatic progenitors. 

ECE 
Commercially available through  
Stem Cell Technologies  
https://www.stemcell.com/

A chemically defined cell growth media and recombinant proteins to 
promote differentiation of hepatic progenitors. 

Implantable human liver 
tissue  

Prototype liver implant for the 
clinic 

ECE https://www.stimuliver.bio/ 
Spin out company Stimuliver are building a prototype liver implant for 
the clinic  

High content ‘Cell Painting’ 
assay and Single Cell 
Morphological Trajectory 
Inference Assay 

Hight content screen 
for expansion or bi-
potent differentiation into 
hepatocyte-like and billary-like 
cells 

ECE https://doi.
org/10.1101/2023.11.15.567184 

A novel 384-well high content ‘Cell Painting’ assay using Hep-aRG™ 
cells and single-cell dif-ferentiation trajectory analysis based on 
morphological signa-ture of hepaRG progenitor ex-pansion or bi-potent 
differentia-tion into hepatocyte-like and bil-lary-like cells.. Published in 
Gra-ham et al., BioRxiv.  

Hepatocyte progenitor 
differentiation hit NXP900 

A screening hit compound 
which promotes hepatocyte 
progenitor differentiaton 

ECE 
Professor Neil Carragher   
N.Carragher@ed.ac.uk 

Hepatocyte progenitor differentiation hit NXP900 was discovered in the 
University of Edinburgh and licensed to Nuvectis Pharma in 2021. The 
compound is currently in phase 1 dose escalation studies in oncology: 
https://clinicaltrials.gov/study/NCT05873686.  

Mouse models of liver Injury 
(AhCreMdm2fl/fl and AAV8.
p21+CCl4) 

Mouse models of 
senescence-driven liver injury 

ECE 
Professor Stuart Forbes  
stuart.forbes@ed.ac.uk 

A mouse model senescence-driven liver injury using AhCreMdm2fl/fl 
mice and a sec-ond independent model of exper-imental cell cycle arrest 
(AAV8.p21 overexpression. Pub-lished in Gadd et al. 2024, In Re-vision).  

Bile Duct cell therapy 
product 

Bile duct cell therapy product  ECE 
Professor Stuart Forbes  
stuart.forbes@ed.ac.uk 

An editable lentiviral luciferase reporter construct that was used to 
create promoter-reporter constructs for basal, mucosecretory and 
ciliated cells. 

3D Wnt model of the 
chondrogenic niche 

A 3D model for cartilage 
formation (chondrogenesis)  

ECE 
Profesor Alicia El Haj 
a.elhaj@bham.ac.uk  

A 3D model for cartilage formation (chondrogenesis) using human 
progenitor cell lines to mimic and maintain tissue functions. 

Wnt platform Strategies to 
demonstrate cartilage repair 

Ligands and materials of 
interest to validate their 
effects on repairing the 
osteochon-dral injury 

ECE 
Professor Andrew McCaskie  
awm41@cam.ac.uk 

In vivo studies using selected ligands and materials of interest to 
validate their effects on repair-ing the osteochondral injury. We aim to 
publish this work.  

Organ-on-a-Chip model of of 
the Musculo-skeletal system 

Organ-on-a-Chip model of 
of musculo-skeletal sys-tem 
for de-veloping re-generative 
therapies 

ECE 
Professor Alicia El Haj  
a.elhaj@bham.ac.uk  

An organ-on-a-chip Wnt platform model approach using a microfluidic 
device in collaboration with EMULATE.  

https://www.stemcell.com/
https://www.stimuliver.bio/
https://doi.org/10.1101/2023.11.15.567184 
https://doi.org/10.1101/2023.11.15.567184 
mailto:N.Carragher%40ed.ac.uk?subject=
https://clinicaltrials.gov/study/NCT05873686
mailto:stuart.forbes%40ed.ac.uk%20?subject=
mailto:stuart.forbes%40ed.ac.uk?subject=
mailto:a.elhaj%40bham.ac.uk?subject=
mailto:awm41%40cam.ac.uk?subject=
mailto:a.elhaj%40bham.ac.uk?subject=
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Engineered Cell Environment (ECE) Hub Resources

Resource Description Hub Contact Further Information  

Wnt-bandages which 
promote bone repair. 

A tissue re-generation patch 
to re-pair lost or damaged 
bone 

ECE 
Professor Alicia El Haj  
a.elhaj@bham.ac.uk 

Wnt-bandages which promote bone repair. Patent P6125GB00 (El Haj & 
Habib) a tissue regeneration patch to repair lost or damaged bone based 
on our publication in Nature Materials. The basis of this work has been 
published in Okuchi Y et al, 2020. 

Lung High Throughput 
Screen and Validation 
Assays  

A high throughput assay for 
screening for modulators of 
proliferation. 

ECE 
Professor Sam Janes  
s.janes@ucl.ac.uk 

A high throughput assay for screening primary airway epithelial cells for 
modulators of proliferation.

Lentiviral luciferase 
reporter construct lung 
differentiation screen 

Lentiviral lu-ciferase re-
porter con-struct for 3D lung 
differen-tiation screen  

ECE
Available on Addgene  
(215326-215329) 

An editable lentiviral luciferase reporter construct that was used to 
create promoter-reporter con-structs for basal, mucosecretory and 
ciliated cells. 

mailto:a.elhaj%40bham.ac.uk%20?subject=
mailto:a.elhaj%40bham.ac.uk%20?subject=
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Smart Materials Hub Resources

Resource Description Hub Contact Further Information  

Tools and Reagents

Human bone marrow stromal cells 
(HBMSCs) – Skeletal Stem and 
progenitor cells from OA and OP 
patients for research

SM Dr Janos Kanczler Disease specific and normal HBMSCs

Synthesis of peptide- modified multi-
arm poly- caprolactone

SM Professor Molly Stevens Custom peptide synthesis and synthesis of peptide-polymer conjugates..

Mineralising Materials SM Professor Alvaro Mata Elsharkawy et al, Nature Communi-cations 2018, 9(2145)

Self-assembling hydro-gels SM Professor Alvaro Mata Redondo-Gomez et al, Biomacromolecules 2019, 20(6),

Multi-zonal scaffold  
produc-tion

SM Professor Molly Stevens
Electrospinning, porogen leaching, and directional freezing
Steele et al, Biomaterials, 2022, 286(121548)

Poly--lysine hydrogels SM Professor Rachel Williams
Levis et al, Investigative Ophthalmology & Visual Science,
2023, 64(8)

Poroelastic electrospun fibres (FiHy™) 
for cartilage regeneration

SM Professor Molly Stevens Moore et al, Acta Biomaterialia, 2023, 167(69-82)

Electrospun polymer fibres for retinal 
regeneration

SM
Professor Molly Stevens, 
Professor Robin Ali, Professor 
Rachael Pearson

HealiOst – bioactive osteogenic coating SM
Professor Manuel  
Salmeron-Sanchez

A mouse model senescence-driven liver 
injury using AhCreMdm2fl/fl mice

SM Professor Stuart Forbes
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Smart Materials Hub Resources

Resource Description Hub Contact Further Information  

Technology

Quantification and analysis of protein 
secondary structure

SM Professor Alvaro Mata Elsharkawy et al, Nature Communi-cations 2018, 9(2145)

Molecular patterning inside hydrogels SM Professor Alvaro Mata Aguilar et al, Advanced Functional Materials 2018, 28(15)

3D printing with self- assembling 
bioinks

SM Professor Molly Stevens
Formlabs and Prusa SLA Printers which have been configured to print 
small (<5 mL) and large (>100 mL) volumes of customised hydro-gels 
and biodegradable polymers.

Filament electrospinning and braiding 
technology

SM
Associate Professor Pierre-Alexis 
Mouthuy

Savic et al. Mater Sci Eng C Mater Biol Appl 129, 2021, 112414

Centre for Additive Manufacturing SM Professor Lisa White

Equipment

SLA 3D Printing SM Professor Ricky Wildman
This has been tailored for MSK work untaken in the Hub.
https://www.nottingham.ac.uk

PCL electrospun filament SM
Associate Professor Pierre-Alexis 
Mouthuy

Savic et al. Mater Sci Eng C Mater Biol Appl 129, 2021, 112414

Textile equipment (weaving, braiding, 
twisting)

SM
Associate Professor Pierre-Alexis 
Mouthuy

Savic et al. Mater Sci Eng C Mater Biol Appl 129, 2021, 112414

https://www.nottingham.ac.uk
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Immunogenicity test platform – in vitro and in vivo 
Professor Giovanna Lombardi (lead) (King’s College London) 
Dr Joanne Jones and Professor Kourosh-Saeb Parsy (University of Cambridge)

Our goal was to develop a platform for testing immune 
responses to advanced cellular therapies to assess  
their likelihood of rejection when transplanted into 
patients. Understanding this is key to the success of 
regenerative medicine. 

Using: (i) iHEPs and primary cholangiocyte organoids 
(PCO; allogeneic vs autologous, in-vivo), and (ii) embryonic 
stem cell-derived dopaminergic neurones (ES-DA), 
chosen because they are about to enter clinical trials for 
the treatment of liver/bile-duct disease and Parkinson’s 
disease respectively, we have performed a series of 
laboratory (in-vitro) and animal (in-vivo) studies.

To date, we have shown that iHeps and ES-DA cells do 
not induce significant immune responses in-vitro (even 
when pre-exposed to inflammatory cytokines). This 
is in keeping with our observation that these cells do 
not express all molecules necessary for immune cell 
activation. We also performed an immune targeted bulk 
transcriptional screen on different cell types, throughout 
their differentiation states and compared to previously 
tolerated cell (dissociated foetal ventral midbrain – fVM 
– tissue) (Figure A). To better explore immune responses 
we generated mice with a human immune system by 
injecting human immune cells into immunodeficient 
animals. Interestingly, allogeneic PCOs survived under the 
kidney capsule but caused significantly higher immune 
infiltration compared to autologous cells (Figures B-D). 
ES-DA cells (transplanted as day16 progenitors) survived 
injection into the mouse brain, and in induced only a small 
inflammatory infiltrate (Figures E,F), confirming their low 
immunogenicity. 

Figure (A) cluster analysis of molecules expressed cells at various stages of differentiation, (B) Percent positive m/hCD45 cells in spleen of 
autologous and allogeneic mice at endpoint (C) Immunofluorescence showing hCD45+ and engrafted PCOs (hKRT7) 6 weeks after kidney capsule 
injection and 3 weeks after humanisation in autologous and allogeneic mice. Matrigel-only injection in contiguous kidney capsule as control. 
Scale bars: 100µm. (D) Percent hCD45+ cells in autologous and allogeneic mice under kidney capsule at endpoint. (E) Early ES-DA graft survival in 
humanised NSGs (F) Infiltration of human T cells into the graft at 1 week. Contra-lateral, non-grafted hemisphere for comparison.
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Alveolar regeneration and tissue resident immune cells 
Professor Ling-Pei Ho (lead) (University of Oxford), Professor Andrew Fisher (Newcastle University), 
Professor James Shaw (Newcastle University), and Dr Niwa Ali (King’s College London)

Idiopathic pulmonary fibrosis (IPF) is characterized by 
progressive fibrosis and regions of abnormal alveolar 
regeneration. The causes and functional consequences 
of abnormal alveolar regeneration is not fully understood. 
Our work focuses on characterising the alveolar 
regenerating niche in situ, in human IPF lung tissue, and 
identifying immune cells that are co-located with normal 
and abnormal areas of alveolar regeneration. 

Normal alveolar regeneration is primarily the 
responsibility of Wnt-II- enriched AT II cells. However 
in IPF and after severe injury (like in severe COVID 
pneumonitis), a group of metaplastic KRT5+ basal 
cells appear after the loss of these AT II cells. Recent 
studies in murine lungs show that a complex mixture 
of intermediate ATII stem cells emerges after injury, 
which may also be present in human IPF lungs. These 
intermediate ATII stem cells may be the pre-requisite 
to bronchiolization and irreversibly damaged alveolar 
epithelium. 

It is not clear why ATII cells in IPF lungs fail to regenerate 
appropriately but the diseased microenvironment that 
surrounds these progenitors is likely to play a major 
role. Our programme of work examines the cellular 
composition of the regenerating alveolar niche and 
physical interaction between immune cells and the 
alveolar stem cells and its intermediates. Understanding 
this immune tissue microenvironment is a pre-requisite 
to delineating how immune cells influence alveolar 
regeneration, and eventually our vision of manipulating 
immune cells to enhance normal endogenous 
regeneration for IPF patients.

We use single cell resolution imaging of lung tissue 
with 37-plex antibody panel staining (performed in 
University of Newcastle) to decipher the co-location 
between highly annotated immune cells and structural 
cells in the regenerating alveolar niche in IPF lungs. We 
developed a suite of mathematical tools in collaboration 
with colleagues at Oxford Mathematical Institute and the 
MRC WIMM Centre for Computational Biology for this 
task (Weeratunga P Nature Communication in press). 

Combining these advanced methods and expert 
histopathopothologist-led analysis of lung tissue, we 
were able to spatially isolate the regenerating alveolar 
niche and about to complete a high resolution temporo-
spatial map for these niches. We combine these findings 
with single cell transcriptomic data to examine receptor 
ligand signalling. We expect a final report of this before 
the end of the year. 

The work is led by Prof Ling-Pei Ho and is a collaboration 
between University of Oxford (MRC Translational Immune 
Discovery Unit, MRC WIMM Computational Biology; 

The Oxford Mathematical Institute) and University of 
Newcastle (Prof Andrew Fisher, Andrew Filby and Jim 
Shaw, Institute of Cellular Medicine). Outcomes have been 
recently published in a preprint. We acknowledge funding 
from UKRMP, MRC, NIHR BRC, Chinese Academy of 
Medical Science Oxford Institute, the Wellcome Trust, and 
Medical Sciences Division, University of Oxford for various 
parts of the project. 

https://doi.org/10.1101/2024.04.10.24305440
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MICA: Organ-on-a-chip models for safety testing of regenerative medicine products 
Professor Hazel Screen (lead), Professor Martin Knight (Queen Mary University London), Professor Alicia El Haj  
(University of Birmingham) Dr Simon Grossemy, Brenda Sanchez, Dr Clare Thompson (Queen Mary University London)

Background
Better model systems are urgently needed for safety 
and efficacy testing of regenerative medicine products, 
prior to clinical trials in people. An organ-chip is a 
bioengineered system, in which the architecture, 
functions and surrounding physiochemical environment 
of a living human organ are recreated. We focus on 
developing physiologically and pathologically relevant 
3D matrix niche environments for joint-chip models, to 
provide improved models systems for product testing.

Methods and Results
Bone, synovium, cartilage, tendon, ligament and muscle 
models are under development to provide joint-chips. 
Development of each tissue necessitate knowledge 
of resident cell populations and of extracellular matrix 
biophysical parameters, to recreate appropriate niche 
environments within the chip to maintain each cell 
population and enable users to drive the model towards 
healthy or pathological status. We have established 
protocols to generate a range of hard and soft 2D and 
3D environments within microfluidic organ chips to 
support this broad model creation, and have used these 
approaches to develop at least one chip model of  
each tissue. 

We have also optimised approaches to integrate 
vasculature within each model. In cartilage, synovium and 
tendon, we have recreated joint inflammation within the 
chips and explore the associated pathways.

Our tendon model has offered particular challenge, owing 
to poor knowledge of resident cell populations and their 
management. Building on our previous studies indicating 
two distinct cell niche environments: the collagen-rich 
fascicular matrix containing fascicular matrix (FM) 
cells, and the soft proteoglycan-rich interfascicular 
matrix containing interfascicular matrix (IFM) cells1, we 
have generated approaches to spatially separate the 
cell populations to explore their phenotype. We have 
demonstrated that IFM cells do not grow in classic cell 
culture, but must be grown on softer substrates if they 
are to be retained for appropriate organ-chip studies  
(fig 1). 

We have established approaches to maintain IFM cells 
and build a tendon model incorporating both populations, 
showing that the model can capture the cytokine 
response of IFM cells to FM cell inflammatory insult, 
and demonstrating that this can be diminished with the 
addition of steroids.

We have recently tested the first ECE Hub target, 
kartogenin, within our tendon model. Kartogenin has 
been identified as beneficial in supporting cartilage 
healthy growth and inhibiting chondrocyte response 
to inflammatory stimuli2. Preliminary analysis of data 
indicates that kartogenin also drive tendon FM cells 
towards chondrocytic matrix production and augments 
the response of IFM and FM cells to inflammatory insult, 
indicating care may be required in its use at a whole  
joint level.

Conclusions
Our new joint-chip models enable studies into the 
physiological and pathological behaviour of each joint 
tissue to better understand drivers of disease, as well 
as providing a platform in which to test the safety and 
efficacy of potential regenerative medicine targets, 
ultimately helping address the bottlenecks in translating 
new therapies to clinic.

References
1. �Zamboulis DE, Marr N, Lenzi L, Birch HL, Screen HRC, Clegg PD, 

Thorpe CT (2023) The interfascicular matrix of energy storing tendons 
houses heterogenous cell populations disproportionately affected by 
ageing. Ageing Disease. DOI: 10.14336/AD.2023.0425-1

2. �Hou M, Zhang Y, Zhou X, Liu T, Yang H, He F, Zhu X (2012) Kartogenin 
prevents cartilage degradation and alleviates osteoarthritis 
progression in mice via the miR-146a/NRF2 axis. Cell Death Dis. DOI: 
10.1038/s41419-021-03765-x
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Figure 1: Tendon IFM cells cultured on a 
range of substates ranging from cell culture 
plastic to surfaces mimicking adipose tissue 
stiffness (4-8kPa). IFM cells stop proliferating 
and dedifferentiated on hard surfaces. Our 
measures of IFM tissue stiffness report 
values of 2-4kPa. IFM cell morphology and 
gene expression is best recapitulated on the 
equivalent 4-8kPa culture surface.
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PEG-based hydrogels for iPSCs-derived regenerative therapies for diabetes
Dr Rocio Sancho (lead), Professor Eileen Gentleman, Dr Aileen King (King’s College London)

3737

The primary cause of Type 1 and late-stage Type 
2 diabetes is the loss of beta cells in the pancreas, 
resulting in reduced insulin levels. The management 
of diabetes requires daily insulin administration. 
Promising therapies revolve around the use of beta cells 
derived from induced pluripotent stem cells (iPSCs). 
However, the differentiation process still suffers from its 
inefficiency. To enhance this efficiency, a viable method 
involves the three-dimensional expansion of pancreas 
progenitor organoids (PPOs) within a 3D scaffold such 
as Matrigel. Unfortunately, the use of Matrigel proves 
incompatible with any translational cell therapy due to its 
variable composition and animal origin. 

Our project focuses on studying hydrogels to understand 
the molecular and physical cues required to generate 
iPSC-derived functional beta cells and provide a safe 
platform to transplant beta cells that could be translated 
to human therapy in the future. We have identified 
the conditions that allow efficient expansion of PPOs. 
In hydrogels, PPO cells form organoids which retain 
high viability and expression of the key pancreatic 
differentiation markers. 

We tested different functionalized hydrogels for their 
ability to sustain PPO growth and performed RNAseq 
analysis to identify the molecular pathways activated 
in each condition. In addition, we optimized a protocol 
to differentiate the hydrogel-expanded PPO organoids 
into beta-like cells (Fig. 1). All the conditions resulted in 
a differentiation similar or slightly higher than Matrigel; 
however, the GSIS response was concomitant with an 
immature beta cell phenotype. 

Preliminary experiments are ongoing to address whether 
the cells could fully mature after transplantation in 
normoglycemic mice. These results demonstrate that 
hydrogels are an alternative platform that sustains the 
growth and differentiation of PPOs into beta cells and 
pave the way for optimization to achieve iPSC-derived 
beta cells for future therapies.

Figure 1. (A) Schematic representation of the PPOs to endocrine cells differentiation protocol.  
(B) Immunofluorescence characterization of PPOs grown in different 3D hydrogels after Day 10  
(Ngn3 endocrine progenitor stage) or Day 16 (endocrine cell stage). Antibodies anti-Insulin (INS),  
CGC (Glucagon), SST (Somatostatin), NGN3 (Neurogenin 3), PDX1 and NKX2.2 were used.  

Figure 1. (A) Schematic representation of the PPOs to endocrine cells di�erentiation protocol. 
(B) Immuno�uorescence characterization of PPOs grown in di�erent 3D hydrogels after Day 10 
(Ngn3 endocrine progenitor stage) or Day 16 (endocrine cell stage). Antibodies anti-Insulin (INS), 
CGC (Glucagon), SST (Somatostatin), NGN3 (Neurogenin 3), PDX1 and NKX2.2 were used.  
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Do adult human oligodendrocytes remyelinate poorly and can we change this  
to better treat progressive multiple sclerosis?
Professor Anna Williams, Dr Laura Wagstaff, Nadine Bestard-Cuche (University of Edinburgh), Professor Robin Franklin (University of Cambridge)

Co-funded by:

Our aim was to generate human oligodendrocytes in 
the laboratory which are adult-like (rather than foetal) 
to better test therapeutics to improve their function, 
to improve the ability to translate such therapies 
successfully to adult multiple sclerosis (MS) patients, to 
improve remyelination and provide neuroprotection in the 
neurodegenerative phase of MS. 

We addressed three challenges: 

1) Do adult human oligodendroglia in health and in MS 
express markers of ageing similar to those in aged rat? 

2) How can we model aged adult human oligodendroglia 
in vitro that well reflect these adult human brain tissue 
cells, including the correct oligodendroglial subtypes?  

3) Does the drug metformin rejuvenate the response of 
human adult oligodendrocyte precursor cells (OPCs) to 
pro-remyelinating compounds leading to better myelin 
protein formation in vitro and better myelination and 
remyelination in vivo, with an appropriate proportion  
of oligodendroglial subtypes? 

In summary, by comparison with our and publicly available datasets, we have identified markers of human adult 
OPCs, and found that these are different from rodent ones focussing our work onto human cells (A,B) (Seeker et al., 
2023, MacNair et al., 2023).
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Professor Anna Williams, Dr Laura Wagstaff, Nadine Bestard-Cuche (University of Edinburgh), Professor Robin Franklin (University of Cambridge)

We have tested a variety of culture systems for human 
OPCs, and found that human embryonic stem (ES) cell-
derived OPCs in monocultures are much more like foetal 
OPCs, in organoids, are more mature, with different 
subtypes, but very few in number and if transplanted 
into mice (chimeras, (C)) show much more similarity 
to adult human OPCs (D) (Kazakou, Wagstaff et al., 
in preparation). These also show different subtypes 
of relevance to remyelination in MS  (E) (Jaekel et al., 
2019, MacNair et al., 2023) with markers relevant to 
adult cells (F). This gives us a robust system to test 
potential remyelination therapeutics in adult/older 
human oligodendrocytes rather than young rodent 
ones which will improve the choice of effective drugs to 
better translate to clinical benefit in adult MS patients. 
However, this is clearly not high throughput. We have 
further developed a method of extracting these cells 

following incubation and successfully culturing them 
in vitro, where they retain low responsiveness to pro-
remyelination drugs, as expected with adult-like OPCs, 
and which is more high-throughput (G). 

We have tested the responsiveness of OPCs in all of 
these systems to metformin (and selected other pro-
remyelinating drugs). Metformin increases human OPC 
functional activity in terms of increased myelin formation 
(G,H), and enhanced metabolic activity (mitochondrial 
response (I) and other metabolic functions) but this 
enhanced metabolic response is also present in the 
neuronal axons, in the chimeric mouse model. This is of 
great interest as metformin is now being tested in MS 
clinical trials in the Multiple Sclerosis Society UK’s UK-
wide OCTOPUS trial for progressive multiple sclerosis, 
a trial platform extending over 10y in an adaptive trial 

design and in a second MS Society-funded trial in the 
earlier phase of relapsing-remitting MS, combining 
metformin with clemastine.  The role of metabolism 
in neurodegeneration is very much of interest to the 
neuroprotection field for all neurodegenerative diseases 
and this work has allowed us to gain a recent Progressive 
MS Alliance project grant investigating neuronal 
metabolism in MS and MS model (collaboration  
between Dr Don Mahad and AW).
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Exploiting in silico modelling to address the translational bottleneck  
in regenerative medicine safety 
AR Alipio, MR Vieira, MC Arno & AJ El Haj, University of Birmingham, C Ashmore-Harris, WY Lu, VL Gadd & SJ Forbes, 
University of Edinburgh, E Antonopoulou, SM Finney, MG Hennessy, A Muench & SL Waters (lead), University of Oxford

Successful clinical translation of cell therapies requires 
robust preclinical approaches to assess their safety, 
toxicity and efficacy as well as an understanding of the 
injured tissue niche. We focus on liver cell therapies, 
and combine in silico, in vitro and in vivo approaches to 
understand how the level of senescence in the injured 
liver influences the multicellular interplay of different 
spatiotemporally activated pro-inflammatory and pro-
regenerative responders, tissue regeneration and injury 
resolution, alongside how the mechanical environment 
experienced by cell therapies in transit through the 
vasculature to the injury site impacts their delivery to, 
and ability to engraft at, the site of injury.

In vivo-in silico models: We perform detailed 
quantitative histological and mRNA expression 
characterisation of the key players in the regenerative 
response and report this for a moderate level of 
senescence induced hepatic injury, utilising the 
AhCreMdm2flox/flox mouse model (Fig. A1). We 
next derived a complementary ordinary differential 
equation model to capture the dynamics of the key 
cell players in the injury response (Fig. A2). We show 
that the mathematical model is able to predict the host 
response to moderate injury via qualitative comparison 
of the model predictions with the experimental data. 
We then use the model to predict the host response to 
mild and severe senescence induced injury, and test 
these predictions in vivo, obtaining good qualitative 
agreement. Both in silico and in vivo we find a dose and 
time dependent tissue regeneration response with initial 
polarisation of macrophages towards an inflammatory 
state, facilitation of immune cell migration to the injury 
niche through activation of endothelial cells and tissue 
remodelling as a result of myofibroblast activation and 

collagen-I deposition. This is followed by a regenerative 
phase, including a macrophage phenotypic switch 
towards a pro-regenerative phenotype, a reduction in 
activated endothelial cells and clearance of activated 
myofibroblasts and excess collagen-I.

In vitro-in silico model: Using a 3D in vitro model that 
mimics physiological flow, we assess the impact of flow 
on cell viability and key matrix attachment proteins, such 
as the family of integrins (Fig B1). Exposure to fluid flow 
reveals significant changes in integrin gene expression 
across different cell types, in contrast to those cells not 
subjected to shear stress (Fig. C), which ultimately can 
impact ECM adhesion and cell engraftment. We assess 
the impact of an adhesive coating at the cell membrane 
on increasing cell adhesion to extracellular matrix 
components and cell-cell interactions (Fig. B2). We solve 
reductions of the Navier-Stokes equations to determine 
fluid flow. 

The transport of a population of transplanted cells is 
modelled via an advection-diffusion equation, and we 
determine the fraction of cells reaching the injury site. 
We also model a single hydrogel-coated cell translating 
in a vessel to quantify the impacts of the geometric 
confinement and coating on the experienced mechanical 
cues (Fig. B3). We demonstrate the importance of cell 
size, showing that an increase in coating thickness 
may or may not have a dampening effect on the cell 
deformation due to the confinement.

Comparison of these complementary data sets enables 
the stress experienced by the cells in transit to the liver  
to be related to integrin expression, providing insights 
into how the mechanical cell environment can be 
modulated to promote downstream cell engraftment. 
These insights can be used to guide and optimise novel 
cell therapy protocols. 

Figure A. A1: Induction of senescence marker expression in Mdm2 mice by AAV8.TBG.Cre dosing. Inset 
demonstrates Cre recombinase expression mediated loss of Mdm2 in hepatocytes as a result of injection of 
hepatotropic AAV8.TBG.Cre. Timepoints for tissue collection and analysis are indicated by days since injury 
induction. A2: Schematic of the in silico injury model with variables and their interactions are presented. Green 
arrows indicate promotion and flat head red arrows indicate inhibition.   
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AR Alipio, MR Vieira, MC Arno & AJ El Haj, University of Birmingham, C Ashmore-Harris, WY Lu, VL Gadd & SJ Forbes, 
University of Edinburgh, E Antonopoulou, SM Finney, MG Hennessy, A Muench & SL Waters (lead), University of Oxford

Figure B. B1: Live Cell Imaging. Mouse hepatic progenitor cells (HPC) in transit under flow conditions (bottom 
to top direction) treated with LIVE/DEAD® dyes. Left 0.159mL/min; middle 1.59mL/min; right 15.9mL/min, 4x 
magnification, Olympus cell Sens software. Top: NucBlue Live reagent stains cells nuclei, DAPI (blue) detection 
(excitation/emission: 360/460 nm) Bottom: NucGreen Dead reagent stains dead cells nuclei, FITC/GFP (green) 
detection (excitation/emission: 504/523 nm). B2: HPCs coated with hyaluronic acid (green) through bio-
orthogonal azide-alkyne click chemistry. B3: In silico model of an individual hydrogel-coated cell translating 
along the centre-line of a cylindrical tube. The arrows are velocity streamlines with the deformed cell and coating 
surfaces shown in red.

Figure C Relative expression. Gene expression levels of endogenous beta and alpha integrins (Itgb, Itga) 
in mouse hepatic progenitors (HPC), mouse hepatocytes and human liver progenitor cells under flow 
conditions (1.59mL/min). Analysis of integrins mRNA expression are presented relative to GAPDH mRNA 
and normalised to cells not subjected to flow (free-floating) as a baseline control (2-ΔΔCq). All values are 
mean±SE (standard error), n=3,5,7 replicates per group, respectively.
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Changes in the Oligodendrocyte Progenitor Cell 
Proteome with Ageing. de la Fuente A G, Queiroz R 
M L, Ghosh T, McMurran C E, Cubillos J F, Bergles 
D E, Fitzgerald D C, Jones C A, Lilley K S, Glover 
C P, Franklin R J M. 2020 Aug; 19(8):1281-1302. 
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org/10.1183/13993003.01200-2019 

Using apheresis-derived cells to augment 
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R L, Schofield A L, Fang Y, Lister A, Sharkey J 
W, Poptani H, Kitteringham N R, Forbes S J, 
Malik H Z, Fenwick S W, Park B K, Goldring C E, 
Copple I M. Hepatology. 2021 Apr 19. https://doi.
org/10.1002/hep.31859 

Differential Expression of Insulin-Like Growth 
Factor 1 and Wnt Family Member 4 Correlates 
with Functional Heterogeneity of Human Dermal 
Fibroblasts. Culley O J, Louis B, Philippeos C, 
Oulès B, Tihy M, Segal J M, Hyliands D, Jenkins 
G, Bhogal R K, Siow R C, Watt F M. Front Cell 
Dev Biol. 2021 Apr 6;9:628039. https://doi.

org/10.3389/fcell.2021.628039

TWEAK/Fn14 signalling promotes 
cholangiocarcinoma niche formation and 
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hepatocyte culture.  Bate TSR, Shanahan W, 
Casillo JP, Grant R, Forbes SJ, Callanan A. 
J Biomed Mater Res B Appl Biomater. 2022 
Dec;110(12):2612-2623. https://doi.org/10.1002/
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ijms23062957 

Senolytic treatment preserves biliary regenerative 
capacity lost through cellular senescence during 
cold storage. Ferreira-Gonzalez S, Man TY, Esser 
H, Aird R, Kilpatrick AM, Rodrigo-Torres D, Younger 
N, Campana L, Gadd VL, Dwyer B, Aleksieva 
N, Boulter L, Macmillan MT, Wang Y, Mylonas 
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Wnt signalling in cell division: from mechanisms to 
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The role of salivary gland macrophages in 
infection, disease and repair. McKendrick JG, 
Emmerson E. Int Rev Cell Mol Biol. 2022;368:1-34. 
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Nuclear factor programming improves stem-cell-
derived hepatocyte phenotype. Rashidi H, Hay DC. 
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A cautionary note on the use of N-acetylcysteine 
as a reactive oxygen species antagonist to 
assess copper mediated cell death. Graham 
RE, Elliott RJR, Munro AF, Carragher NO. PLoS 
One. 2023 Dec 11;18(12) :e0294297. https://doi.
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Single-cell morphological tracking of liver cell 
states to identify small-molecule modulators of 
liver differentiation. Rebecca E. Graham, Runshi 
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https://doi.org/10.1101/2023.12.16.572007 

Mapping interindividual dynamics of innate 
immune response at single-cell resolution. 
Kumasaka, N., Rostom, R., … Nikolic MZ … Huang, 
N. et al. Nat Genet 55, 1066–1075 (2023). https://
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its role in epithelial cell fate. Sci Immunol. Barnes 
JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, 
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https://doi.org/10.1007/s41669-023-00443-w  

Using a theory-based, customized video game as 
an educational tool to improve physicians’ trauma 
triage decisions: study protocol for a randomized 
cluster trial. Mohan D, Angus DC, Chang CH, Elmer 
J, Fischhoff B, Rak KJ, Barnes JL, Peitzman AB, 
White DB. Trials. 2024 Feb 16;25(1):127. https://
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09.05.2019. Applicant: Queen Mary University 
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Chavarria, Esther Tejeda-Montes, Roxanna 
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EP3436474, WO/2021/168183, US/2022/0363734 
(Granted: 23.04.2024). 

11. WO/2020/058456 – Self-assembling graphene 
oxide-protein matrix. Publication date: 26.03.2020. 
Applicant: Queen Mary University of London. 
Inventors: Yuanhao Wu, Wen Wang, Alvaro 
Mata Chavarria. Related patents: EP3852821, 
US/2021/0346570. 
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12. US/2020/0155724 – Scaffold. Publication 
date: 21.05.2020. Applicant: Oxford University 
Innovation Limited. Inventors: Osnat Hakimi, 
Pierre-Alexis Mouthuy, Nasim Zargar Baboldashti, 
Andrew Carr. Related patents: US/2016/0228608 
(Granted: 10.12.2019), EP3052152, CN105979977 
(Granted: 10.03.2020), WO/2015/049524. 

13. US/2016/0229104 – Electrospun filaments. 
Publication date: 11.08.206. Grant date: 
17.08.2021. Applicants: ISIS Innovation Ltd, 
Oxford University Innovation Ltd. Inventor: 
Pierre-Alexis Mouthuy. Related patents: 
CN105658850 (Granted: 29.03.2019), EP3047057, 
WO/2015/040399. 

14. EP3349814 – Non-gelling soluble extracellular 
matrix with biological activity. Publication date: 
25.07.2018. Applicants: University of Pittsburgh 
Commonwealth Sys Higher Education, University 
of Nottingham. Inventors: Stephen F. Badylak, 
Timothy Joseph Keane Jr, Lisa Jane White. 
Related patents: US/2019/0060521 (Granted: 
11.08.2020), WO/2017/049167, ES2873519, 
US/2020/0360565. 

15. WO/2022/229653 – Decellularized tiddue 
hydrogels. Publication date: 03.11.2022. Applicant: 
Univesity of Nottingham. Inventors: Lisa White, 
Joshua Jones. Related patents: EP4329833. 

16. US/2018/0318212 _ Composition comprising 
diacid derivatives and their use in the treatment 
of collagenic eye disorders. Publication date: 
08.11.2018. Grant date: 05.11.2019. Applicants: 
University of Liverpool. Inventors: Rachel L. 

Williams, Colin E. Willoughby. Related patents. 
EP3370736, WO/2017/077300. 

17. EP3496760 – Opthalmic compositions. 
Publication date: 19.06.2019. Applicant: 
University of Liverpool. Inventors: Victoria 
Kearns, Helen Cauldbeck, Steve Rannard, Rachel 
Williams, Maude Le Hellaye. Related patents: 
US/2019/0175742 (Granted: 19.03.2024), 
WO/2018/029477, ES2910987. 

18. WO/2023/194587 – Hydrogels. Publication 
date: 12.10.2023. Applicant: University of 
Liverpool. Inventors: Rachel Williams, He Liang, 
Hannah Levis, Vito Romano. 

19. WO/2023/237898 – Novel treatment. 
Publication date: 14.12.2023. Applicant: University 
of Liverpool. Inventors: Rachel Williams, Jyle 
Doherty, Hala Dhowre. 

20. WO/2019/243375 – Single particle automated 
raman trapping analysis. Publication date: 
26.12.2019. Applicant: Imperial College of Science, 
Technology and Medicine. Inventors: Molly 
Stevens, Jelle Penders, Isaac Pence. Related 
patents: CA3104027, CN112585448, EP3811052, 
US20210262915, JP2021527818 (granted 
30.08.2023), DK3811052 (granted 11.09.2023), 
FIEP3811052, ES2960707, IN202117001782. 

21. WO/2021/019253 – ultrasound-triggered 
liposome payload release. Publication date: 
04.02.2021. Applicants: Imperial College 
Innovation Ltd, The Chancellor, masters and 
scholars of the University of Oxford. Inventors: 

Valeria Nele, James P. Armstrong, Molly M. 
Stevens, Carolyn Schutt Ibsen, Michael D. 
Gray, Constantin C. Coussios. Related patents: 
CA3149618, EP4007608, CN114728067, 
JP2022544752, US20220249669. 

22. WO/2023/217767 – Scaffold supported 
organoid farms for controlled high-throughput 
in vitro organoid aggregation and regional 
orgaonid patterning. Publication date: 16.11.2023. 
Applicants: Imperial College Innovation Ltd, 
Institut für molekulare biotechnologie GMBH, 
Christopher Lawrence Grigsby. Inventors: 
Christopher Lawrence Grigsby, Kaja I. Ritzau-Reid, 
Richard Wang, Ruoxiao Xie, Daniel Reumann, 
Jürgen Knoblich, James P. Armstrong, Jonathan 
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184. DOI: 10.1016/j.nano.2017.09.008. 
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The cell in the ink: Improving biofabrication by 
printing stem cells for skeletal regenerative 
medicine. Biomaterials, 2019. DOI: 10.1016/j.
biomaterials.2019.04.00. 
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M, Mutreja I, Kim YH, Dawson JI, Woodfield 
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Laponite-gelatin bioinks. Biofabrication, 2019. DOI: 
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a locally stiffness-matched porous scaffold. 
Applied Materials Today, 2019. DOI: 10.1016/j.
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Kinetic Control over Peptide Self-Assembly with 
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