Area of investment and support

Area of investment and support: Biological influence on future ocean storage of carbon (BIO-Carbon)

The BIO-Carbon programme will provide new insights into the role of marine life in ocean carbon storage and robust predictions of future ocean carbon storage in a changing climate. The programme aims to highlight the importance of international waters in carbon policy and will focus on processes that are globally relevant.

Budget:
£10.3 million
Duration:
there will be multiple funding rounds between 2022 and 2027
Partners involved:
Natural Environment Research Council (NERC)

The scope and what we're doing

The ocean stores huge amounts of carbon dioxide (CO2) that would otherwise be in the atmosphere.

Marine organisms play a critical role in this process, but emerging evidence indicates that climate models are not fully accounting for their impact.

This undermines carbon policies, such as national net zero targets.

This BIO-Carbon research programme is carefully designed to produce new understanding of biological processes. It will provide robust predictions of future ocean carbon storage in a changing climate.

The World Climate Research Programme, which coordinates climate research internationally and is sponsored by UN organisations, has expressed its greatest priorities as three questions.

This programme will address two of those questions:

  • what biological and abiological processes drive and control ocean carbon storage
  • can and will climate-carbon feedbacks amplify climate changes over the 21st century?

There are three interlinked programme challenges, which will address three aspects of biological influence.

Challenge one: how does marine life affect the potential for seawater to absorb CO2 and how will this change?

The ability of the ocean to absorb CO2 is influenced by its alkalinity. Reducing alkalinity pushes more of the dissolved carbon in seawater into the form of CO2.

This reduces the capacity of the ocean to take up further CO2 from the atmosphere.

Seawater alkalinity is influenced by a range of natural processes. The most important of these is the biological production of calcium carbonate (for example, by molluscs and fish), which removes alkalinity from seawater.

As the calcium carbonate sinks, it dissolves and the alkalinity is returned to the seawater.

Maintaining the vertical distribution of alkalinity fundamentally sets the capacity of our oceans to take up CO2. However, estimates of global ocean calcium carbonate production, vertical transport and dissolution vary by up to a factor of five.

This uncertainty is important because failure to reproduce alkalinity accurately in a climate model significantly impacts future projections of ocean CO2 uptake and storage.

Examples of significant knowledge gaps relating to key processes include:

  • what organisms are producing highly soluble carbonates in the surface ocean and where
  • which forms of calcium carbonate are dissolving where in the ocean
  • what are the factors involved in the dissolution of different forms of carbonate, and what is their sensitivity to the anticipated impacts of climate change?

Challenge two: how will the rate at which marine life converts dissolved CO2 into organic carbon change?

Primary production by marine phytoplankton converts a similar amount of CO2 into organic material each year as do all land plants combined.

Climate models cannot constrain this crucial global flux to within a factor of three for the contemporary climate, which points to major gaps in understanding.

Furthermore, uncertainty about our estimates for how oceanic primary production will change under climate warming has increased, rather than lessened, this decade. Whether global primary production will increase or decrease is unknown.

Primary production is strongly influenced by ocean warming and the availability of light and nutrients. However, the contributions of changes in these drivers to trends across climate models are poorly constrained.

The importance of organism interactions and metabolism, and their associated demands for carbon and other resources, is neglected by climate models. This is despite emerging observational indications of their significance.

Examples of knowledge gaps relating to key processes, operating across different scales, include:

  • what controls the efficiency of primary production
  • what are the contributions of nutrient recycling and the consumption of phytoplankton by zooplankton to this efficiency
  • how do these processes vary across different ocean environments, and how might future change, such as warming and acidification, affect them?

Challenge three: how will climate change-induced shifts in respiration by the marine ecosystem affect the future ocean storage of carbon?

Organic carbon produced in the upper ocean cannot be returned to the atmosphere until it is converted back into CO2 by the respiration of marine organisms.

Deeper ocean respiration supports longer carbon storage as it takes longer to return to the ocean surface and make contact with the atmosphere.

We still have poor understanding of how respiration varies with depth, location or season. We know it reflects the diversity of the organisms, from bacteria attached to sinking dead material to fish migrating daily between the surface and ocean interior.

We also know that these organisms are responding to anthropogenic changes, such as changes in temperature which affect the metabolism of organisms.

In addition, existing models only reproduce a limited selection of relevant processes, with no consistency in that selection across models.

Examples of significant knowledge gaps relating to key processes include:

  • what is the relative influence of size, shape and composition of non-living organic material in determining the rate at which it is converted back to CO2
  • what are the relative magnitudes of the CO2 generated by bacterial degradation of non-living organic matter and that respired directly by other organisms
  • how might ongoing changes in the environment (for example, to oxygen or temperature) affect respiration?

Why we're doing it

The ocean takes up 20 to 30% of anthropogenic carbon dioxide (CO2) emissions, holding 50 times the total amount of carbon present in the atmosphere.

However, the ocean’s ability to store carbon is sensitive to climate change, and inaccurately accounting for changes in oceanic carbon storage risks the efficacy of net zero ambitions and jeopardises major international efforts to reach global climate targets.

This was recently highlighted by the G7 Future of the Seas and Oceans initiative.

The United Nations Climate Change Conference (COP26) has seen nations identify specific targets for their carbon emissions.

However, the ocean is already responding to anthropogenic change, and the efficacy of national targets depends on an accurate picture of how the global ocean will continue to store carbon.

The recently published global carbon budget has highlighted that there are large gaps in our understanding of how the ocean does this.

Trends in the flux of atmospheric CO2 into the ocean differ by a factor of three between models and observations, leading to widening discrepancies in future projections.

An understanding of the fundamental processes responsible for ocean carbon storage is also essential for any meaningful discussion of the efficacy and risks of climate mitigation through artificially perturbing the ocean as part of CO2 removal schemes.

Such discussions are restarting internationally due to the emerging need for negative emissions, unless there is urgent action to avoid a temperature rise greater than 1.5°C.

Biological processes are responsible for maintaining a lower concentration of carbon in the ocean surface relative to deeper waters, facilitating ocean storage of atmospheric CO2.

However, the mechanisms by which they do so, and the sensitivity of these mechanisms to climate change, are poorly understood.

The Intergovernmental Panel on Climate Change’s sixth assessment report stated that there is high confidence that feedbacks to climate will arise from anthropogenically triggered alterations to ocean biological processes.

However, there is low confidence in the magnitude of the feedbacks, or whether they have a positive or negative effect.

This knowledge gap is reflected in current climate models, with no consensus on which biological processes are included and no analysis of the consequences for predictions of this inconsistent representation.

There is therefore an urgent need for an integrated observational and modelling research programme that provides the capability to predict the future of global oceanic carbon storage with the accuracy required to guide human activity towards desired climate goals.

Such a programme would address the critical need for ‘a predicted ocean’, identified as a priority by the UN Ocean Decade to provide the knowledge, skills and tools to predict, and adapt to, future changes in the ocean and their impacts.

Past projects, outcomes and impact

Grants awarded to date as part of the programme are available on Grants on the Web.

Who to contact

BIO-Carbon team

Email: biocarbon@nerc.ukri.org

Last updated: 17 October 2022

This is the website for UKRI: our seven research councils, Research England and Innovate UK. Let us know if you have feedback or would like to help improve our online products and services.